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ABSTRACT 

STEINBERG, REBECCA M., M.S., May 2019, Environmental Studies 

Predicting Post-Mining Hydrologic Effects of Underground Coal Mines in Ohio through 

Multivariate Analyses and GIS Tool Building 

Director of Thesis: Dr. Natalie A. Kruse 

 Coal mining activities can result in a variety of environmental issues and, 

worldwide, one of the greatest threats from coal mining is acid mine drainage (AMD). In 

the eastern U.S. coal bearing regions, AMD is a wide spread environmental impairment 

to waterways, especially from abandoned or closed underground coal mines. Pollutional 

discharge can result from flooding of underground mines, or mine pools, resulting in 

reactions that create AMD and discharge to surface water. Research has focused on 

improving reclamation and treatment methods for AMD to address ongoing pollution 

problems, but there is a need for more reliable prediction methods for use in continued 

permitting of lands for coal mining. Under the Surface Mining Control and Reclamation 

Act (SMCRA), coal companies are required to estimate the post-mining water levels to 

determine if a mine pool will form and if there may be a pollutional discharge, but there 

is a lack of a science-based method for determining the hydrologic response to mining.  

This thesis sought to address the gap in prediction by expanding previously 

explored parameters of mine pool formation in post-SMCRA mines through expanding 

previous multivariate statistical analyses. Analyses were done in both the Unscrambler X 

and Neuroshell. An algorithm produced in Neuroshell, an artificial neural network 

program, resulted in the least amount of error and was incorporated into a tool for 
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modeling post-mining potentiometric head elevation through ArcGIS Pro model building 

function. The predictive tool developed in ArcGIS Pro was made to output points of 

predicted post-mining water levels. The tool only requires input of data that would be 

required for an underground mine permit application. This work has continued the work 

of an ongoing project to provide mine companies and regulators with a predictive ArcGIS 

tool that determines if a mine pool will form and discharge to the surface. This project’s 

final output is an empirically predictive ArcGIS tool that is publicly available for 

download to be used as a new approach to science-based estimation of underground 

mining effects on area hydrology. Methods used to develop both the algorithm and the 

tool in ArcGIS Pro can be used in other coal bearing regions around the world to develop 

a similarly useful tool for understanding connections between hydrology and 

underground mining.  
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CHAPTER 1: INTRODUCTION 

Worldwide, pollutional discharges from coal mining have been and continue to be 

an environmental issue (Younger, 2000; Underwood et al., 2014; Lottermoser, 2015). 

Coal extraction has been a dominant industry providing the United States with energy 

since the 1800s, and with this long-term extraction comes long term environmental 

degradation (Crowell, 2005). Underground mining can specifically harm surface water in 

the area of the mine through alteration of the local hydrology and formation of mine 

pools that can discharge to the surface. Coal extraction can result in a variety of chemical 

reactions with the minerals previously underground in anoxic conditions, now exposed to 

the surface. Acid mine drainage (AMD) has been and continues to be a major 

environmental threat in the eastern U.S. in areas with a history of coal mining. Research 

in recent years has focused on remediation techniques (Wei et al., 2017). In addition to 

the focus on remediation, the high complexity of the system variables influencing AMD 

generation limits progress on research of such systems. Thus, research is lacking on the 

prediction of AMD, resulting in a lack of understanding the systems and influences of 

this environmental hazard. Reliable prediction of the formation of mine pools and the 

possibility of acid generation at the permit level would prevent initial degradation and 

remove the need for and cost of remediation efforts. Research into understanding major 

variables determining the formation of underground mine pools and their discharge to the 

surface is needed in order to propose updated methods and tools for decreasing 

environmental harm from continued coal mining. 
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Study Area: Eastern Ohio 

The eastern portion of Ohio sits in the Appalachian basin which, along with 

Pennsylvania and West Virginia, host the Appalachian coal field. The coal formed in this 

area of the country is high in sulfur content and thus not as pure or high quality as 

western coal (Crowell, 2005). The elevated sulfur and common occurrence of pyrite 

(FeS2) is highly reactive when in contact with atmospheric oxygen and water, resulting in 

AMD.  The occurrence of AMD can form naturally from mineral exposure to the surface, 

but also commonly forms during mining activities, both surface and underground. 

Surface mining can mitigate AMD through capping waste piles, preventing water run-off, 

and diverting flow from passing through the mine area where minerals are exposed 

(Akcil and Koldas, 2006). Pollution from underground mining is difficult to mitigate, as 

AMD forms when a mine potentially fills with water and air, while sealing and/or 

collapsing mines does help reduce possible acid generation, it does not remove the 

possibility (Singer and Stumm, 1970).  

 This project focuses on post-SMCRA underground coal mines in eastern Ohio, 

shown in Figure 1. The Surface Mining Control and Reclamation Act (SMCRA) of 1977 

made it mandatory for companies to obtain a land permit prior to coal mining. The 

applications for mine permits require providing plans and finances for environmental 

protection and reclamation if pollution were to occur in the permitted area. Companies 

are required by SMCRA to determine if a mine pool will form or not in the applications 

for a mine permit as part of the plans for environmental protection. If a mine pool is 

determined likely to form, and that the pool may form a pollutional discharge to the 
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surface, the permit application may be denied. There has never been a permit denied in 

Ohio for a coal mine, but mines have formed pools post-closure, possibly indicating  that 

regulators’ and mine companies’ methods for determining the post-mining hydrology are 

insufficient. A previous study (discussed in Previous Study) has collected and analyzed 

data for post-SMCRA underground mines, and this study expands that analysis and 

develops the tool for application. 
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Figure 1 - Map of study area with pre-SMCRA, post-SMCRA and specific post-SMCRA 
study mines highlighted that are the focus of this project 
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Need for Prediction Methods 

Under the federal regulations that require mine companies to obtain a mine 

permit, as part of the remediation plans included, they are to provide a characterization of 

area geology and hydrology. This study of hydrology includes determining where the 

water will rise to within the mine void post-mining, determining if the mine will form a 

mine pool and have the possibility of creating a pollutional discharge to surface waters. 

Mining companies do not have a strong science-based method for determining post-

mining water levels and instead currently use the top elevation of the coal seam being 

mined as an estimate for post-mining water levels.  

Along with the lack of a science-based method for determining post-mining water 

levels, the cost of treating AMD is costly (Underwood et al., 2014). Post-SMCRA mine 

permit applicants are required to provide proof of funds for remediation and treatment 

plans if AMD is caused, but often mines are still left without a source of funding for 

treatment after closure. When pre-SMCRA mines were closed no one was held 

responsible for their conditions post-mining and thus funding is difficult to find for 

remediation of abandoned mines. If successful prediction methods can be developed and 

implemented for both mine pooling and resulting discharge, the need and cost for 

remediation of AMD related issues could be reduced. 

An on-going project funded by the federal Office of Surface Mining Reclamation 

and Enforcement (OSMRE) with Ohio University’s Department of Geological Science 

and the Voinovich School of Leadership and Public Affairs is addressing this need for 

prediction methods. The goal of this project was to collect and compare large amounts of 
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hydrologic and geologic mining data to develop an empirical predictive method for 

determining post-mining water levels and hydrologic conditions. This thesis project was a 

continuation of the initial work done on the OSMRE funded project and was part of the 

end goal in providing an ArcGIS tool for predicting post-mining water levels to the 

mining companies of Ohio.  

Project Goals 

In proposing a new coal mine, mining companies are required to determine if 

there will be a pollutional discharge after mining is complete and the mine is closed. 

Currently, the mining companies determine if a mine will discharge based on an 

approximation using the elevation of the top of the coal seam being mined or the highest 

point of the mine compared to the surface elevation. This project looks to address the 

issue and provide a method to companies for determining the likelihood of mine pooling 

and resulting pollutional surface discharge through empirical multivariate statistical 

models.  

The main research question addressed is Can post-mining water level be 

predicted, within acceptable error, through multivariate analysis of hydrologic and 

geologic parameters and spatial interpolation? This question is approached in several 

stages; first through testing approaches for multivariate analysis to determine 

relationships of hydrologic and geologic parameters and develop an algorithm to predict 

post-mining water levels using these relationships, and secondly through applying spatial 

interpolation methods for creating a surface of predicted post-mining water levels based 

on point predictions. These two approaches are finally incorporated in a user-friendly 
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ArcGIS tool that automatically runs point predictions and risk areas as part of the on-

going OSMRE funded project. 

The goals for addressing this question are to: 1) use individual potentiometric 

head measurements instead of averages to obtain larger data set for multivariate analysis, 

2) determine best spatial interpolation method for expanding point predictions to area 

predictions, 3) develop functioning tool for ArcGIS that extracts variables, applies 

prediction algorithm, and runs spatial analysis to predict risk area surfaces, and 4) 

determine the range of acceptable error in both algorithm and interpolation surface in the 

empirical model. The major outcome of this project is the GIS-based tool for predicting 

post-mining water levels and risk for mine pool formation and surface discharge in the 

coal bearing region of Eastern Ohio. The method for developing the prediction tool and 

risk areas will be applicable to other coal producing regions with slight regional 

adjustments in the weighting of variables in the development of the prediction equation. 

The development of this empirical method for predicting post-mining water levels will 

thus not only address Ohio’s regulatory gap of a science-based method of prediction, but 

also provide a greater understanding of hydrologic effects of underground mining to be 

applied in regions globally. 
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CHAPTER 2: LITERATURE REVIEW 

Ohio Geology 

 Most of Ohio’s western and northern portions were glaciated during the last ice 

age, leaving behind surface deposits of till. Where the glaciation terminated, the hilly 

foothills of the Appalachian Mountains begin and make up eastern and southeastern 

Ohio. The western portion of Ohio is underlain by older aged deposits and, as seen in 

Figure 2, the eastern side has Pennsylvanian and Mississippian aged deposits (Coogan, 

1996). The majority of the coal mined in Ohio is in Pennsylvanian/Mississippian aged 

deposits. These deposits consist of shale, limestone, clay, and sandstone, with multiple 

coal layers (Figure 3). Coal in Ohio has a 3.5 percent or greater sulfur content, making it 

less economically desirable coal than other coal locations that have less sulfur content 

due to regulations on sulfur dioxide emissions (Crowell, 2005).  
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Figure 2- Map of surface geology in eastern Ohio in relation to pre-SMCRA and post-
SMCRA underground coal mines, data from (ODNR Geographic Information Systems, 
1997; ODNR, 2019) 
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Figure 3 - Stratigraphic column of typical eastern Ohio geology of limestones, shales, 
sandstones, and coals (Coogan, 1996) 
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Ohio History of Coal Mining 

 Coal was first reported in Ohio in 1748, but coal mining in Ohio began around 

1800 and has continued since. The early method of extraction was exclusively 

underground mining, and it was not until 1948 that other methods such as surface mining 

were developed and practiced (Crowell, 2005). With the industrial revolution, the 

demand for coal and ability to extract coal increased dramatically as new technologies 

were developed beginning in the mid 1800s, with peak demand during the 1960-70s. As 

of 2005, the Ohio counties with the greatest amount of coal extraction are Belmont, 

where 824.9 million tons have been extracted since 1816, followed by the counties of 

Harrison, Jefferson, Perry, Athens, Tuscarawas, Guernsey, Meigs, Muskingum, and 

Noble (Crowell, 2005). This density of coal mining in the eastern part of Ohio is 

displayed in the study area mines in Figure 2.  

More recently, the demand for coal in Ohio and in the U.S. has begun to decrease 

for several reasons. Higher quality (less sulfur) coal has been mined the western U.S. and 

resulted in decreased demand from the Appalachian coal fields. Another contributing 

factor to the decline was the introduction of the Clean Air Act of 1970, implementing 

emissions reductions from the burning of fossil fuels across the U.S. (Crowell, 2005). 

This act also helped spur the development of renewable energy sources to take the place 

of fossil fuels. Increased demand for natural gas over coal has also played a part in the 

decrease in coal extraction. While coal mining is in decline, it is continuing to occur as a 

complete switch to renewables will take time. The argument also exists that, while new 

energy sources are arising, the increase energy demands of our growing population will 
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keep the demand for coal in existence (Crowell, 2005). With new mines opening each 

year in addition to the many active and abandoned mines, understanding the impacts of 

coal extraction remains an important area of research.  

Surface Mining Control and Reclamation Act 

The Surface Mining Control and Reclamation Act (SMCRA) was enacted in 1977 

and established OSMRE to implement the act. This act places responsibility on the coal 

companies to mine and to reclaim the permitted land within environmental standards 

(“OSMRE Laws, Regulations, and Guidance”; U.S. Department of the Interior, 2012). As 

of August 3, 1977, any new or continuing mines were placed under this regulation within 

the U.S. Part of this act is a per ton tax on current coal extraction that funds the 

reclamation of abandoned mine land and water that occurred pre-law.  

While this is a federal act, it is left to the individual states to decide how to 

implement and enforce SMCRA (U.S. Department of the Interior, 2012). In Ohio, 

permitting of coal mines is regulated by the Ohio Department of Natural Resources 

(ODNR), where mining companies are required to display their plan and financial ability 

to reclaim the mined lands, their preliminary characterization of the hydrology and 

geology in the area, and plans for mining in the least environmentally damaging way 

(Skousen and Zipper, 2014; Ohio Administrative Code, 2016). This characterization of 

area hydrology and geology includes determining the hydrologic consequences of mining 

to determine post-mining implications for mine pools and discharge. Currently, ODNR 

requires for underground mining permit applications a “…minimum of one test hole per 
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one hundred sixty acres” and does not list a number of wells required to provide the listed 

hydrologic sampling (Ohio Administrative Code, 2016). 

Mine Pools 

 Underground mines leave a large void space that can be infiltrated by 

groundwater moving through the surrounding strata (Lambert et al., 2004; McDonough et 

al., 2005). Post-mining, the water infiltrating the mines is no longer pumped out and the 

void space can eventually fill with water to the point of flooding and possibly discharging 

flow from the mine to the surface. Figure 4 is a conceptual diagram of the stages of 

mining and how mine pools form in mines below the water table. The pre-mining stage 

displays an undisturbed coal seam that has a non-pollutional seep to the surface water 

because the coal is not exposed to the atmosphere, resulting in no reaction and thus no 

surface water impacts (Figure 4). The second stage, during mining, shows how water 

attempts to fill the mine but is pumped out to the surface to prevent pooling during 

extraction, as well as how fractures in the surrounding strata are starting to appear (Figure 

4). Finally, the post-mining stage shows water filling the mine is no longer pumped to the 

surface and a pool forms, shown here discharging AMD to the surface water due to the 

reaction from the exposure of minerals to the atmosphere and water (Figure 4). This mine 

water discharge can carry AMD pollution generated in the mine void, thus understanding 

how and when mine pools form is important to understanding the generation of AMD.  

There is the possibility of natural neutralization of these discharges by the overlying 

lithology that the water passes through, such as limestone layers. 
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Figure 4 - Diagram displaying the stages of pool formation and AMD generation with 
stages of coal extraction 
 
 

Subsurface hydrology and mine pool formation are a complex problem, making 

prediction a challenge. The degree of flooding in a mine is thought to have a large impact 

on the duration of AMD from the mine, as fully flooding a mine reduces access to 

oxygen and limits reactions (Lambert et al., 2004). Water can also move more quickly 

into these areas post-mining due to fracturing in the above strata from mining activity 

(Pigati and López, 1999). Similarly to a fully flooded mine, the degree of AMD can be 

neutralized by limestone buffers in the area geology (Akcil and Koldas, 2006). 
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Acid Mine Drainage  

Acid mine drainage (AMD) is a chemical reaction of the exposure of sulfur 

containing minerals to water and oxygen that occurs both naturally and resulting from 

coal mining. This reaction is characterized by low pH and often has associated metal 

precipitates in receiving waterways. AMD can form in any coal extraction method, since 

extraction results in the exposure of sulfide minerals to the atmosphere. As seen in the 

reactions (1-3) below, iron sulfides break down and form iron oxides and hydrogen ions. 

Reaction (1) is the rate determining step of AMD production as it is dependent on the 

availability of enough oxygen and water for a reaction to occur (Singer and Stumm, 

1970). Reaction (3) shows to continuing oxidization of ferric iron and precipitating 

amorphous hydrous ferric oxide, which is the orange or yellow precipitate that is 

associated with AMD streams and coats the bottom of the water way (Lambert et al., 

2004).  

(1) 2FeS2(s) + 7O2(aq) + 2H2O → 2Fe2+ + 4SO4
2- + 4H+ 

(2) 2Fe2+ + 0.5O2 + 2H+ → 2Fe3+ + H2O 

(3) 2Fe3+ + 6H2O ⟷ 2Fe(OH)3(s) + 6H+ 

(4) 14Fe3+ + FeS2(s) + 8H2O → 2SO4
2- + 15Fe2+ + 16H+ 

Various factors can determine the degree and rate of AMD produced. Primarily, 

the rate is determined by: pH, temperature, oxygen content, water saturation, surface area 

of metal sulfide exposed, required activation energy, and bacterial activity (Akcil and 

Koldas, 2006). The duration of acid generation is also variable, while some abandoned 

underground mines have continued to discharge for more than 30 years others have 
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naturally stopped generating in 10 years (Lambert et al., 2004). The natural recovery of 

these AMD systems is discussed in Lambert et al 2007 as directly linked to the degree 

and type of flooding that occurs in the underground mines based on their 25-year study.  

Treatment 

 Recent research has been focused on developing treatment methods for existing 

AMD impaired streams (Wei et al., 2017). Types of treatments are either active, requiring 

continued input of work or chemicals, or passive, requiring no continued input and 

minimal maintenance (Underwood et al., 2014). A variety of treatment methods exist, 

with the most common passive method a treatment with a base substance, such as lime 

dust, to neutralize the waters pH downstream from the site of treatment (Akcil and 

Koldas, 2006).  

 Treatment methods are often a costly solution to AMD. In one watershed in Ohio 

alone, Raccoon Creek, an estimated $12,000,000 has been put into remediation of 

abandoned mines between 1999 and 2014, with the largest tributary an estimated 

$6,500,000 of the total (Underwood et al., 2014). There is also often no source of funding 

for implementing and maintaining the remediation systems, allowing for the 

environmental degradation to continue (Younger, 2000; Akcil and Koldas, 2006; 

Underwood et al., 2014).  

Prediction Methods 

 Fewer methods for prediction of post-mining pollution exist than treatment 

methods, most of which require extensive sampling and testing for each proposed 

extraction area. Some sampling methods used for determining AMD potential are: static 
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tests such as acid base accounting (ABA), and kinetic tests such as net acid generation pH 

(NAGpH) (Akabzaa et al., 2007; Bouzahzah et al., 2014). Static and kinetic tests, 

originally developed in the 1970s, are still widely used by industry today. Static tests 

determine the difference between the acid generating and acid neutralizing reactions of a 

sample to determine acid generating potential (AGP), and kinetic tests more accurately 

predict AGP through long term reaction comparisons  (Weber et al., 2004; Bouzahzah et 

al., 2014; Lottermoser, 2015). These are strictly tests characterizing the chemistry of the 

area and not taking into account the many other parameters that cause AMD 

(Lottermoser, 2015). There is a need for more comprehensive testing methods, but also 

risk determining methods that do not require the same degree of sampling equipment and 

time. 

 For predicting post-mining water level, a variety of variables are taken into 

consideration. The dip of the mine needs to be considered, as down-dip mines will flood 

because water cannot flow down and out of the mine as in up-dip mines (Lambert et al., 

2004). Determining the location of aquifers above the mine and the potentiometric head 

are also important factors in characterizing area hydrology. Characterizing the aquifers 

helps determine the hydrologic connections and interactions that can be impacted or 

caused by mining, such as impacts of pumping during mining (Hawkins and Dunn, 

2007). Area precipitation also has an impact on the groundwater hydrology through 

recharge (Burbey et al., 2000; McDonough et al., 2005). 

Area geology is also an important factor due to the permeability of various strata 

and the depth to the coal layers being mined. The degree of mining in the area and type of 
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mining can also influence the area permeability due to fracturing of the surrounding strata 

or collapsed mine pillars (Burbey et al., 2000; Hawkins and Dunn, 2007). Permeability of 

the surrounding strata is also an important influence because mine water becomes 

reactive from contact with water and oxygen (Younger, 2000; Akcil and Koldas, 2006; 

Wei et al., 2017). 

GIS Applications 

 Previous studies have applied geographic information systems (GIS) to prediction 

problems to form a perspective of the geographical relationships. A few examples of GIS 

applications are its use to determine the transport of contaminants from abandoned mine 

areas (Yenilmez et al., 2011), to create a vulnerability map applying models used to 

determine parameters of groundwater vulnerability in AMD sites (Sakala et al., 2018), to 

determine landslide vulnerability mapping with ModelBuilder (Jiménez-Perálvarez et al., 

2009) and others. Outside of mining, GIS has also been used in creating risk maps for 

landslides through multivariate statistical analyses of data from known landslide events 

(Pradhan, 2010).  

 GIS can also be used to apply spatial interpolation methods to prediction of issues 

with in spatial data. Other studies have used various methods of spatial interpolation and 

compared their results and accuracy. Examples of these studies are comparing methods of 

kriging to predict heavy metals in soil (Milillo et al., 2017), comparing several kriging 

methods and inverse distance weighting methods for estimating geospatial data 

(Zimmerman et al., 1999), , and comparing kriging methods for incorporating surface 

elevation in predicting rainfall (Goovaerts, 2000). Several overview studies exists of 



28 
 
applying machine learning methods, geostatistical methods, and spatial interpolation 

methods to environmental variables (Li and Heap, 2011, 2014). 
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CHAPTER 3: METHODOLOGY 

The main objective of this project and previous work is to better understand the 

hydrologic response in underground mine after closure. For the purpose of this project 

and the previous work, it is assumed that measures of potentiometric head in higher strata 

aquifers respond the same as the lower strata aquifers that contain the underground 

mines. While measurements in a monitoring well are clearly not the same as 

potentiometric head measures within the mine, area hydrology responds similarly due to 

the interconnectedness of groundwater hydrology (Means et al., 2018). Thus, predictions 

of potentiometric head measures can be extrapolated to the coal layers in the lower 

aquifers to gauge the hydrologic response within the mine after closure when 

potentiometric head data in the mined strata are lacking. 

 All data collected were from public data sources so results from this thesis and 

from the OSMRE funded project can be available for public use. The majority of data 

analysis and compilation was performed in ArcGIS Pro, as opposed to other open source 

geospatial programs or ArcMap, because ArcGIS is widely used as the standard by the 

state agencies and mining companies that are the target users of the project outputs. 

ArcGIS Pro was used opposed to ArcMap due to ArcGIS Pro set to be the replacement 

for ArcMap as the standard within several years. The data formats are usable in ArcMap 

and the tool can be modified to run in ArcMap. 

 Due to the large amount of data and multiple variables examined for their 

influence on mine pool formation, complex multivariate methods were used to 

understand the relationship of variables and form a predictive method. Multivariate 
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regression models were developed to further understand the variable relationships as well 

as form a predictive algorithm to use in the GIS model. 

Previous Study 

 Previous work on the Ohio University grant project titled “Tools to predict the 

hydrological response and mine pool formation in underground mines” has collected vast 

amounts of data from public sources and recent analyses have identified several key 

variables in determining the formation of a mine pool (Lopez and Kruse, 2015). This 

thesis project is a continuation of the work done for the OSMRE funded project and 

includes the continuation of developing mine pool formation prediction equations and 

construction of the GIS tool for applying the equations. Independent variables examined 

in this study include: surface elevation, bottom elevation of well, overburden thickness, 

thickness to mined coal, thickness of shale and clay in overburden, separate thicknesses 

of coal, sandstone, and limestone, total coal volume extracted, acres of underground 

mines within 4 miles, average precipitation, and water withdrawal over distance (Schafer, 

2018). Schafer (2018) and Twumasi (2018) were instrumental in developing the approach 

methods and analysis for the predictive model that this thesis expands upon.  

The study by Schafer (2018) focused on multivariate statistical analysis and 

determining model parameters, with specific focus on the mine D-0360. The majority of 

the data extraction and format of what data was need for analysis was determined by the 

work of Schafer (2018). She analyzed the data set from 11 mine permits in Unscrambler 

using minimum, maximum, and averaged potentiometric head measurements over the 

period of record as well as analyses with water withdrawal data and without. She found 
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that using partial least squares regression using the amount of coal mined at the point of 

water level measurement showed a strong relationship with low error. From the analyses 

done in Unscrambler by Schafer (2018), the 11 variables used in this project were 

selected. The methods of analysis run by Schafer (2018) were followed in this thesis. 

Twumasi’s (2018) work focused on artificial neural network (ANN) development 

and modeling of groundwater of the Meigs Mine complex. He used the program 

MODFLOW to examine the formation and sensitivity of variables causing mine pool 

formation in the Meigs Mine complex. For ANN work Twumasi (2018) used the Group 

Method of Data Handling (GMDH) simulation to run data sets with both water 

withdrawal data and no water withdrawal data. This thesis also followed the methods 

selected for running the ANN program Neuroshell that Twumasi (2018) used in his work.  

The variables determined to be significant to pool formation and determining the 

post mining water levels of the pools by these studies are further examined in this thesis. 

The relationships are then used in the formation of the predictive algorithm incorporated 

into the GIS tool.  

 Data for the previous work on this project was collected and organized by well 

site and an average, minimum, or maximum potentiometric head measurement was used 

for multiple measurements at each site. For this thesis, a new approach to data was used 

to expand the amount of data available to run through the analyses and to test if this 

would improve accuracy. Instead of each well represented as a single measurement with 

an average, minimum, or maximum head, each measurement in time was used, resulting 

in 5 times the amount of data points available for analysis. 



32 
 
 An important assumption in these previous projects (Schafer 2018, Twumasi 

2018) was the ability to extrapolate the prediction of water levels at well locations at 

elevations above the coal seam down to the mined coal seam. The extrapolation of the 

water level prediction is possible due to the discontinuous nature and interconnections of 

the area hydrology. This assumption of extrapolating predicted water elevations down to 

the coal seam is continued within this thesis as well. 

Collection of Data 

 Significant variables to both mine pool formation were determined through 

various multivariate methods, similar to use in previous studies (Pradhan, 2010; Schafer, 

2018; Twumasi, 2018). Variables investigated in this project were the same as used in the 

previous studies discussed above: potentiometric head, surface elevation, bottom of well 

elevation, overburden thickness, coal seam mined thickness, clay/shale thickness, 

limestone thickness, sandstone thickness, total coal thickness, area mined in 4-mile buffer 

zone, accumulative coal extracted, and annual average precipitation, for each well point.  

Various sources were explored for useful data for prediction of mine pool 

formation in the area of Eastern Ohio.  All data collected is publicly available, so tools 

resulting from this project can be accessed and utilized by the public. Types of data sets 

collected have geographic references for use in spatial analysis, some were downloaded 

in a shapefile format and others as a data table. The mines of focus for this study are post-

SMCRA underground mines in eastern Ohio, of which there is a shapefile of digitized 

areas from ODNR that includes information such as area of mine, type of mining, and 
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coal seam(s) mined. Previously downloaded rasters of statewide elevation and top of coal 

elevation were also used in this study. Figure 5 displays data downloaded or extracted. 

 

Figure 5 – A map displaying mine shape files downloaded from ODNR, as well as the 
raster layers of coal seams and the DEM 

 

The majority of time dedicated to data collection was in extraction of well and 

borehole data from scanned PDF format mine permits. This required manual extraction of 

borehole and water well data from PDF documents into standardized Excel sheets. These 

sheets were formatted to have a standardized layout and required input data so that only 

useful data was collected and recorded in a way that was easy to import and merge in 

ArcGIS for analysis. This standard format is also used and discussed later in the user 

inputs for using the developed ArcGIS tool. Data extracted from the mining permits for 
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wells included: location data, projection (if recorded), surface elevation, depth of well, 

static water level, and aquifer type. Data for boreholes collected included: location data, 

projection (if recorded), surface elevation, bottom elevation, overburden thickness, 

thickness of coal mined, percent lithology of shale, limestone, sandstone, clay and coal. 

These percentages were later converted to total thicknesses.  

For some mines with few points of well data in the main permit application, well 

data was also extracted from post-mining quarterly monitoring reports (QMRs) within the 

documents requested from ODNR. The same Excel format used in collecting well data 

from permit wells was used for QMR wells. This data was originally extracted for 

analysis by Schafer (2018) and was used in the continued analysis for this thesis. 

Precipitation data was also collected for each mine, but due to the range of time 

the well data spans, a complete data set for local precipitation for each mine was too 

cumbersome to include in the analysis. Figure 6 is the map of annual average 

precipitation used in this analysis and in Schafer (2018) and Twumasi (2018). While the 

map is from a likely outdated data set from the 1990’s, it was determined to be the most 

comprehensive and easily accessible dataset for the area of the study mines. Additionally, 

the precipitation across the area is not highly variable and likely would not be a 

significant variable between mines so averages in the area are sufficient for this analysis. 

This map was overlain as a tiff image and georeferenced with in ArcGIS. Precipitation 

values were then read off the map at each well location. Values of annual average 

precipitation were often the same for wells for a single mine, with the larger mines being 

the exception.  
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Figure 6 – Map of average annual precipitation for the state of Ohio used to extract 
average precipitation data for the area of mines studied, (ODNR Division of Water 
Resources, 1980) 
 

Accumulative volume of coal extracted from each underground mine was also 

collected for use as a variable in the multivariate analyses. This variable was used to 

represent the amount of void space created from mining to represent how much water 

was pumped out of the mine. Data was downloaded for each mine permit from U.S. 
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Department of Labor’s Mine Data Retrieval System (U.S. Department of Labor, 2019). 

Coal volumes are recorded quarterly, so values for each quarter were copied to Excel 

sheets. For each well, the date of measurement was used to determine the quarter of coal 

extraction to calculate the total coal extracted at the point in time. The final accumulative 

amount of coal extracted from closed mines was also calculated. This method for 

extracting the accumulative coal volume extracted was developed by the Schafer (2018) 

and was repeated for the data set for this thesis. 

Variable Extraction from ArcGIS 

 Several variables used in the multivariate analyses were extracted from maps of 

existing or collected data in ArcGIS Pro: the nearest borehole to each well and the acres 

of existing underground coal mines in a buffer area around the study mine.  

The nearest borehole to each well was needed to determine an approximate 

lithology for the area. Figure 7 displays the process in ArcGIS using the tool ‘spatial join’ 

with the parameter ‘closest’ used to determine which borehole was closest to each well. 

From this the values for borehole lithology were joined to each well, providing values for 

the lithology related variables (overburden thickness, coal seam mined thickness, 

clay/shale thickness, limestone thickness, sandstone thickness, total coal thickness).  

The acreage of mined area within a buffer around each mine permit area was calculated 

from both the pre-SMCRA and post-SMCRA mine shapefile layers acquired from 

ODNR. Several buffer distances were tested to determine what distance should be used 

for the analysis. As displayed in Figure 8, buffers of 1, 2, and 4 miles were tested. The 

previous studies related to this project determined that the 4 mile buffer distance from the 
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study mine produced the best results, likely due to the heavy influence of void space on 

the area hydrology (Schafer, 2018). Once a buffer was created, the pre- and post-SMCRA 

layers were clipped within the buffer area and those clipped shapes were used to calculate 

the area of void space around the study mine. This value was extracted in square feet but 

was converted to acres for analysis. 
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Figure 7 – Map that displays the use of the spatial join tool in ArcGIS Pro to obtain the 
lithology of the closest borehole and join it to the well points 
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Figure 8– Map displaying the development of buffer zones, of which ultimately the 4 mile 
buffer zone was used, in exctracting the area of undergound mining activity surrounding 
the study mine 
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Multivariate Analysis and Modeling 

 For mine pool formation, the potentiometric head is investigated as the dependent 

variable for determining independent variables relationships. Multivariate regression 

analyses were run in several programs to determine the relationships between and 

significance of the variables. These analyses were run first in the multivariate statistical 

program The Unscrambler X version 10.5, which describes the relationship of the 

independent variables and provides regression equations for different regression methods. 

Analyses of the variables were also run in a second program, Neuroshell 2.0, which uses 

artificial neural networks (ANN) to determine relationships of the variables and produce 

a complex polynomial regression equation for determining potentiometric head post-

mining.  These equations were compared by their complexity and root mean squared 

errors to determine which equation to apply in predicting post-mining water levels 

through the ArcGIS tool.  

Multivariate Statistical Analyses 

Initial statistical analysis of the variables examined were run in the program 

Unscrambler X, following methods as previously developed by Schafer (2018). Methods 

of multivariate analysis tested were multiple linear regression (MLR), principal 

component regression (PCR), principal least square regression (PLS) and principal 

component analysis (PCA) (Schafer, 2018). These methods develop interpretations of the 

relationships of the variables input and produces a multivariate linear regression equation 

to represent those relationships. These methods were the same tested by Schafer, 2018, 
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but re-run with the new expanded data set to compare results and accuracy with Schafer’s 

results, and to further develop the predictive model.  

MLR was not appropriate for this data set, as it requires variables be independent 

of one another, which is not the case with this data set. PCA was used in defining 

variables and determining their relationships. MLR and PCA are explained in detail in 

Schafer (2018) and in CAMO (2019). 

PCR is a combination of PCA and MLR, where the variances of the principal 

components (PC) are compared in multidimensional space as in PCA, and then form a 

regression using the relation of the variance of the Y component to the X components as 

in MLR (CAMO Software AS, 2019). Figure 9 displays this method, showing the 

combination of PCA and MLR methods for describing the multidimensional space of the 

data.  

 

 
Figure 9 - Visual representation of the process of PCR, using PCs to describe the 
variance in the Y, (CAMO Software AS, 2006) 
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PLSR is a combination of PCA and MLR, but instead of comparing PCs to each 

other, defines the X and Y matrices as factors, which are then compared as PCs would be 

to define the X relationship to predicting Y. Figure 10 displays how these matrices define 

the Xs and Ys and then compare them. This data set though only has one Y variable.  

 

 

Figure 10  – Visual representation of the process of PLSR, where the X and Y variable 
matrices are compared as PCs, (CAMO Software AS, 2006) 
 

PLSR and PCR previously produced the most accurate regression equations, with 

PLSR resulting in slightly less error, and thus were the focus for this study (Schafer, 

2018). Both regression models are multivariate linear regression analyses that identify an 

axis in multidimensional space to represent the variance between variables and to best 

represent their relationships. 

The PLSR and PCR analyses in the Unscrambler X also provide results that allow 

for identification of outliers in the data set through looking at the analysis resulting 

residuals. The data residuals are how far each sample is from the axis, or PC, that is 
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defining the variable in multidimensional space (Figure 11). Samples with large residual 

values may be skewing results, thus can be identified as outliers and removed (CAMO 

Software AS, 2006, 2019). The values of the residuals are also used to determine the 

model error.  

 

 

Figure 11 – Visual representation of the sample residuals along a principle component 
(PC) that is defining X variables in multidimensional space (CAMO Software AS, 2006) 
 

Artificial Neural Networks 

 The program Neuroshell 2 version 4.0, first developed in 1993, was used as a 

second method for developing an algorithm to predict post-mining potentiometric head 

elevation. Neuroshell is a program that utilizes the construction of artificial neural 

networks to analyze complex non-linear relationships between input data and determine 

‘weights’ for input variables to form a polynomial equation (Twumasi, 2018). An 
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artificial neural network is defined as a mathematical model that runs a computational 

simulation that imitates the behavior patterns of neurons in the human brain to perceive 

patterns in data, to ‘learn’ from a training data set (Sánchez‐Mesa et al., 2002; Twumasi, 

2018). Described in ‘Neural Network Overview’ of Ward Systems Groups Inc.’s 

Neuroshell 2 help document, neural networks construct neurons to develop networks of 

interconnected neurons from input data (input neurons) that are able to use connections 

through layers of hidden neurons to produce an output network (output neurons) in which 

the connections or weights between neurons describe the data set relationships. Figure 12 

shows the input, hidden, and output neurons, with line in between them indicating the 

weights of the network connections, and each type of neuron representing a layer. 

Multiple layers of hidden neurons are often constructed to further the learning process of 

the network (Ward Systems Group, Inc., 2019). 

 

 

Figure 12 – Visual representation of the development of neuron layers in the creation of 
an artificial neural network, connected by lines representing the weighting of the network 
connections, (Ward Systems Group, Inc., 2019) 
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 The learning module used for developing the equation was Group Method of Data 

Handling (GMDH) with the Advanced Training Criteria, the same as previously used 

successfully in Twumasi (2018). The advanced training option for GMDH allows the 

user greater freedom in selection of training criteria. These training criteria options 

determine how the program selects or removes ‘neurons’, or polynomial factors, from 

‘layers’ in the construction of the algorithm (Ward Systems Group, Inc., 2019). Also 

selected from the Advanced Training Criteria were the ‘schedule type’ as Asymptotic 

with ‘decrease in maximum number of survivors’ as Gentle. For this project, only the 

options ‘selection criteria’ and model optimization’ were varied.  

 Selection criteria is the most important parameter when designing a GMDH 

model as the options determine how neuron ‘survivors’ are selected (Ward Systems 

Group, Inc., 2019). For selection criterion, Prediction Squared Error (PSE), Full 

Complexity Prediction Squared Error (FCPSE), Minimal Description Length (MDL), 

Generalized Cross Validation (GCV), Final Prediction Error (FPE), and Regulatory 

(calibration) were all tested, with each option for model optimization as well. PSE is a 

combination of two terms in determining selection, the model average squared error and 

an overfitting penalty. FCPSE is a modified version of PSE that takes into account the 

model complexity instead of number of coefficients. MDL is also similar to PSE but has 

a greater value for the overfitting penalty. GCV is another version of applying an 

overfitting penalty. FPE takes into account the minimum variance of the mean-squared 
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error of model prediction. Regulatory is different in that it looks at the average squared 

error of the model when applied to a test set manually selected out of the main data set.  

 Model optimization options tested were Smart, Thorough, and Full. The 

optimization options are for improving the model by removing terms deemed 

unnecessary, to either improve function or accuracy, and can affect how the model 

determines significant variables (Ward Systems Group, Inc., 2019). Smart provides a 

balance between calculation speed and model quality. Thorough is similar to Smart but 

looks closer at selecting significant variables. Full is the most complex approach in that it 

examines all variables combinations at each stage of model development, resulting in a 

highly complex but accurate model.  

ArcGIS Tool Building 

 A predictive ArcGIS tool for mine pool formation and post-mining water levels, 

while the main output goal of the previously discussed OSM mine pool project (see 

Previous Study), is also part of this project’s outcomes. The goal for this tool is to be 

publicly available and used by mine companies and/or regulators to determine the post-

mining water levels of a proposed permitted underground mine based on analysis of 

previous mining data. This prediction of post-mining water levels will aid in determining 

the risk of mine pool formation and possible resulting pollutional discharge to surface 

waters. The tool is designed to only require input of existing data or data already required 

to be collected for the mine permitting process. ArcGIS Pro and the incorporated 

ModelBuilder function make it easy to design a tool for processing the user’s data apply 

our developed analysis model to output points of predicted water level.  
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ModelBuilder allows a series of geoprocessing tools to be run in a sequence, set 

up as a diagram of chain connected inputs, tools, and outputs (ESRI, 2019c). Parameters 

required for inputs and outputs are defined in the ModelBuilder platform, which when 

running the resulting tool are pulled in and analyzed without further input from the user. 

The type and format for data needed for input into ArcGIS and to be run through the tool 

are defined as templates to be used with running the tool. 

Python Scripting 

 For the application of the selected prediction algorithm, a python script was 

written to manually apply the calculation to variables extracted by the first part of the 

model. The script was written in Python 2.7 and imported as a tool in ArcGIS Pro that 

was then able to be added to the ModelBuilder tool flow. The manual scripting allowed 

for clear and correct pulling of variable values and equation application. The script is 

included in Appendix C. 

Tool Validation 

Running of the tool was tested using existing well and borehole data points to 

determine the reliability of the output of the tool as well as used for de-bugging during 

construction of the tool. Post-mining data from two mine complexes, the Meigs mine 

complex and the Corning mine complex, were explored to be used to validate the tool 

outputs with measured data. While the Meigs mine complex data was used in the 

development of the equation, the data was more complete than any other mine. The 

Corning mine complex was also used, but due to incomplete data, estimations were 

required for some variables.  
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Geostatistical Analysis and Spatial Interpolation 

 Several methods for spatial analysis of the predicted post mining water level were 

explored. To create a raster surface layer in ArcGIS Pro from points of predicted post-

mining water level, methods for spatial interpolation were explored to estimate the values 

of the area surrounding the well points. Spatial interpolation is defined as “the prediction 

of variables at unmeasured locations based on a sampling of the same variables at known 

locations” (Bolstad, 2016). Methods usually rely on using the nearest known point to 

estimate the unknown value or a combination of values certain distance away. 

The main methods explored as applicable to the kind of data analyzed in this 

project were Inverse Distance Weighting (IDW) and Kriging (ESRI, 2018). These 

methods were researched and compared with actual project data to determine which 

would be used in the finally stages of the GIS prediction tool in ArcGIS Pro.  

 IDW is a deterministic method of interpolation that uses the measurements at 

points and distance to nearest points (Bolstad, 2016; ESRI, 2018). The distance to each 

known point determines the weight of their contribution to the interpolated point, hence 

the farther away the point is from the prediction point the lower the influence the point 

has (or weight) is on the prediction (Childs, 2004; Bolstad, 2016). Figure 13-A displays 

the IDW method of predicting the yellow point based on the points within a certain 

distance, the red points within the yellow outline. 

Kriging is a similar method of spatial interpolation to IDW, but differs in that 

kriging is a geostatistical method of spatial interpolation and incorporates autocorrelation 

analysis which allows from determination of error in interpolation (ESRI, 2018). Figure 
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13-B displays the kriging method of interpolating the red point based on the weights and 

relationships, lines shown connecting the points nearby. Equation 1 describes this type of 

weighted sum, where Z(si) is the measured value at the ith location, i is the weight of the 

value of the measured value at the ith location, so is the predicted location, and N is the 

number of measured values (McCoy et al., 2002). Kriging results can be examined with 

the analysis of a plot of the spatial autocorrelation of the data, called a variogram 

(Bolstad, 2016). A variogram plots the semi-variance of the data against the lag distance, 

the greater the lag distance the less influence a point has on the resulting prediction value.  

 

 
Figure 13 – Diagrams displaying methods of spatial interpolation techniques, on the left 
(A) IDW and on the right (B) kriging, (ESRI, 2019b, 2019a) 
 

Equation 1: 

�̂�(𝑠0) =∑λ𝑖Z(s𝑖)

𝑁

i=1
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These spatial interpolation methods were tested on a selected mine from the post-

SMCRA mine data set that had a distributed amount of points to determine if kriging or 

IDW can produce a reliable prediction surface. The interpolation surfaces were compared 

based on errors from the differing parameters to run each analysis. The kriging analysis 

was evaluated for spatial autocorrelation through examining the resulting variogram. 
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CHAPTER 4: RESULTS 

Multivariate Analysis 

 The two programs The Unscrambler X and Neuroshell 2 were used successfully 

in running the analysis on the post-SMCRA mine data. The analysis followed the model 

structure developed by the previous work of Schafer (2018), and Twumasi (2018), but 

with an expanded data set to further develop the model.  

The Unscrambler X 

The expanded data set was re-analyzed using the same statistical analyses used 

previously by Schafer (2018), to increase accuracy of the prediction equation and 

determine if additional data produced better results. Multivariate analysis in the 

Unscrambler X using PCA, PCR, PLSR regressions showed that PLSR still produced the 

best regression with the least amount of error. These runs were all done with the same 

expanded data set of 2872 data points, 2581 points used for prediction and 291 points 

used for validation (~10 percent of the data set).  

PCA was previously used in determining variable relationships and was re-run 

here to check for consistency in variable relationships with the original analysis and this 

analysis. Figure 14 shows the results of the PCA correlation loading of the variables (all 

considered X variables in PCA) reflects the previous study variable relationships. The 

correlations loading chart displays the model variables in relation to each other, closer 

together the more related and vice versa. It also displays how much of the data variance 

the variables explain, with the outer ellipse representing 100% explained variance and the 

inner 50% variance. The variables surface elevation, bottom elevation, and 
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potentiometric head were all displayed as closely related and near to explaining 100% of 

the data variance. The variable for underground mining in a 4-mile buffer and limestone 

thickness were also important to explaining total variance. 

 

 

Figure 14 – Correlation loadings chart for the PCA run displaying the relationships of 
the variables. The outer ellipse is 100% explained variance and the inner ellipse is 50% 
explained variance. Variables that are closer together are more related. This displays a 
strong relationship between surface elevation, bottom elevation, and potentiometric head 
elevation.  
 

Results from the PCR was able to explain total variance of the data by 3 PCs 

(Figure 15). In Figure 16 the regression’s predicted values versus the actual reference 

values are compared, plotting both the calculation points and the 10 percent validation 

points, at the PC2 level where the most variance is explained. The r-squared value of 

0.972 indicates an accurate regression model. The correlation’s loading diagram in Figure 

17 indicate a strong relationship between the X variables of surface elevation, bottom 
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elevation, and the Y variable of potentiometric head, just as displayed in the PCA run. 

Figure 18 also displays the relationships of the examined variables by displaying the 

weights of variables on the regression, still indicating the high level of influence from 

surface and bottom elevations with smaller influences from the other variables.  

 

 

Figure 15 – Graph of explained variance in the PCR run, total explained variance 
required 3 PCs 
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Figure 16 – Graph of predicted versus reference values for the PCR run, displaying a 
decent regression with r-squared value of 0.973. Calibration data set is blue, and the 
10% validation set is in red 
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Figure 17 - Correlation loadings chart for the PCR run displaying the relationships of 
the variables. The outer ellipse is 100% explained variance and the inner ellipse is 50% 
explained variance. Variables that are closer together are more related. This again 
displays a strong relationship between surface elevation, bottom elevation, and 
potentiometric head elevation. 
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Figure 18 - Bar chart displaying the weighting of variables for the PCR run in PC2. PC1 displayed influence heavily in the variable of 
area of mining in the 4-mile buffer, PC2 here displays the influence from the other variables.
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The results of the PLSR were similar to the PCR in that both required 3 

factors/PCs to reach total explained variance (Figure 19), as well as displaying similar 

influences of variables (Figure 20). The correlations loadings chart from the PLSR run 

(Figure 21) displays the relationship of variables similar to the PCR and PCA runs in that 

X variables surface elevation, bottom elevation and Y variable potentiometric head are 

closely related and are near the outer ellipse of 100% explained variance. Also like the 

PCR run, the PLSR run also provided a strong regression, as seen in Figure 22 with the 

predicted values versus the actual reference values of the data set. Compared to the PCR 

run, this regression run has a slightly higher r-squared value of 0.982, and so a slightly 

more accurate model result. This determined PLSR as the best regression analysis in the 

Unscrambler X for the data set and was examined further. Table 1 displays the regression 

coefficients for the PLSR run with this expanded data set.  
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Figure 19 - Graph of explained variance in the PLSR run, total explained variance 
required 3 factors 
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Figure 20 – Bar chart displaying the weighting of variables for the PLSR run in Factor 2. Factor 1 displayed influence heavily in the 
variable of area of mining in the 4-mile buffer, just as in the PCR run, Factor 2 here displays the influence from the other variable
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Figure 21 - Correlation loadings chart for the PLSR run displaying the relationships of 
the variables. The outer ellipse is 100% explained variance and the inner ellipse is 50% 
explained variance. Variables that are closer together are more related. This again 
displays a strong relationship between surface elevation, bottom elevation, and 
potentiometric head elevation. 
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Figure 22 – Graph of predicted versus reference values for the PLSR run, displaying a 
decent regression with r-squared value of 0.983, better than the PCR run. Calibration 
data set is blue, and the 10% validation set is in red. 
 

 

Variables PLS Coefficients 
β -1.55728 
Surface Elevation (ft msl) 0.47898 
Bottom Elevation (ft msl) 0.52696 
Overburden Thickness (ft) 0.03656 
Mined Coal Seam Thickness (ft) -0.00252 
Shale + Clay Thickness (ft) -0.02280 
Sandstone Thickness (ft) -0.00694 
Limestone Thickness (ft) -0.02862 
Total Coal Thickness (ft) -0.00361 
Total Coal Extracted (Mm^3) -0.02301 
Underground Mines in 4 Mile Buffer (acres) -0.00012 
Average Annual Precipitation (in) -0.00199 

 

Table 1 - Regression variable coefficients from PLSR run 
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Also tested with the expanded dataset was the normalization of the variable values 

to determine if adding normalization would help decrease error any. Figure 23 displays 

the PLSR regression run on the normalized values with an r squared value of 0.955, less 

than the PLSR and PCR runs with the non-normalized values. Normalizing the dataset 

produced a similar resulting regression in terms of variable relationships and using 3 

factors to explain total variance but produced more error than non-normalized values. 

From this test it was determined that non-normalized values were to be used exclusively 

for the remainder of the data analysis. 

 

Figure 23 - Graph of predicted versus reference values for the normalized data set PLSR 
run, displaying a regression with r-squared value of 0.955, displaying that normalized 
values have not produced a better regression than the non-normalized values of this data 
set. Calibration data set is blue, and the 10% validation set is in red. 
 

Outliers were identified and removed from the PLSR run through use of the 

Leverage vs. Residual plots produced by the Unscramble X, following the method used 
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by Schafer (2018). Figure 24 shows the plots with the outliers removed labeled by the red 

arrows and circles, selected out by the distinct distance from the grouping of points on the 

plots that represent the rest of the dataset. A total of 53 outliers were removed. With the 

exception of the first outliers removed in PLS run 1 from mine D-0360, the other outliers 

were from only two mines, D-1019 and D-2317.  

 

 

Figure 24 – Leverage versus residual 3-dimensional plots used to determine outliers from 
the PLSR run, re-run with the removal of the outliers to form the final regression. 

 

Artificial Neural Network 

 The artificial neural network (ANN) analysis conducted by Twumasi (2018) was 

also re-run with the expanded data set in Neuroshell 2.0 to produce a polynomial 

regression equation (Table 2). As with the previous analyses by Schafer (2018) and 

Twumasi (2018), the ANN equation still resulted in lower error than the less complex  
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PLSR regression produced in the Unscrambler X. Variable transformations in the 

previous ANN run were similar to the re-run results, indicating consistency in the 

analyses. The ANN equation was selected as the algorithm incorporated into the ArcGIS 

tool due to the increased complexity resulting in less error of post-mining potentiometric 

head prediction (r-squared values of 0.982 with PLSR vs. 0.9906 with ANN). Testing 

was done for each combination of model optimization and selection criterion parameters 

described in the section Artificial Neural Networks, resulting in 18 test variations, labeled 

‘A-R’ described in Table 2. The tests were compared based on three model descriptors: 

the number of “less significant variables” to determine which run kept the majority of 

Table 2 – Neuroshell test runs of model optimizations and model selection criterions, 
sorted by the lowest number of “less significant variables”, then by the highest r squared 
values, and lastly by the lowest algorithm complexity. The selection of test ‘K’ is 
highlighted 
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input variables, r-squared values for comparing errors, and algorithm complexity 

(measured as number of characters) to compare how manageable the equation would be 

in applying to the predication model. Table 2 was sorted by these model descriptors, 

starting with the lowest ‘number of “less significant variables”’, then the highest ‘r 

squared’, then lastly the lowest ‘algorithm complexity’. From these comparisons, 

equation ‘K’ was selected for further analysis to be selected as the final equation used in 

the ArcGIS tool, as it retains all variables determined significant to predicting post-

mining water levels, has a lower complexity than other runs that retain variables and still 

has a high accuracy (r squared of 0.9906) like the more complex runs.  The resulting 

equation and variable transformations for ANN run ‘K’ is displayed in Table 3. 
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Table 3 – Resulting equation for test ‘K’ with variable transformations and error results 

Polynomial Net (GMDH) Test 'K' 
Best formula: Y=0.1*X7-4.9E-002*X11+9.2E-002-2.1E-002*X4+1.9E-

002*X9+0.41*X1-1.1E-002*X3+6.5E-002*X6-
0.1*X10+4.3E-002*X5+0.56*X2-0.37*X1^2-
0.38*X2^2+2.5E-002*X11^2-0.14*X2^3-6.5E-
002*X11^3+0.84*X1*X2-
0.24*X1*X11+0.36*X2*X11+3.2E-002*X1*X2*X11-
1.9E-004*X6^2+4.1E-002*X5*X6+4.3E-002*X7^2+4.E-
002*X10^2-2.6E-002*X7^3+5.E-002*X10^3-
0.14*X7*X10-1.1E-002*X9^2-1.6E-002*X9^3-2.5E-
002*X2*X9+1.3E-002*X5^2-2.5E-002*X6^3-1.4E-
002*X1^3+2.E-002*X1*X7+3.1E-002*X6*X10+2.7E-
002*X1*X3+1.4E-002*X9*X11+2.9E-
002*X2*X4+1.3E-002*X8^3-1.6E-002*X8*X11+6.7E-
003*X4^2+4.5E-003*X1*X6   

Variable Transformations: X1=2.*(Surf_Elev (msl)-545.)/835.-1.  
X2=2.*(Bot_Elev (msl)-244.04)/1055.96-1.  
X3=2.*(Overb_Thick (ft)-65.)/638.1-1.  
X4=2.*(MinedCoal_Thick (ft)-.07)/11.69-1.  
X5=2.*(Shale/Clay_Thick (ft)-.35)/552.55-1.  
X6=2.*Sand_Thick (ft)/262.3-1.  
X7=2.*Lime_Thick (ft)/204.97-1. 

 
X8=2.*TCoal_Thick (ft)/33.23-1. 

 
X9=2.*Accum_coalextr (Mm^3)/138.61-1. 

 
X10=2.*(4Mile_Buffer (acres)-2061.)/108987.5-1.  
X11=2.*(AvgAn_Precip (in)-37.5)/3.7-1.  
Y=2.*(PotentioHead (msl)-400.)/932.-1.   

R squared: 0.9906 
Mean squared error: 324.8997 

Mean absolute error: 12.3227 

Min. absolute error: 0.0014 
Max. absolute error: 147.93 

Correlation coefficient r: 0.9953 
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These test runs indicate that FPE and GCV model selection criteria work best for 

developing an accurate algorithm with this type of data, which, described in Chapter 3, 

are very different approaches from the other selection criteria options. The other criteria, 

MDL, PSE and FCPSE, were quick to drop the geologic variables out of the equation 

while GCV and FPE kept all variables. This was likely due to the high influence of the 

hydrologic variables. And the selection of ‘K’ suggests that while full and thorough 

provide the most accurate model optimization options, the complexity was also high. 

Equation ‘K’ used the smart method which retained the model accuracy, r-squared of 

0.9909-0.9907 to ‘K’s 0.9906, and halved the complexity. Due to the retention of low 

error and reasonable complexity, this led to the selection of equation ‘K’. 

The selected equation was then validated using actual measured post-mining 

water levels in the Meigs Mine No. 2, permit D-0354, reported in quarterly monitoring 

reports (QMRs) and compared with the predicted values produced by the equation. Table 

4 displays the three points of comparison using the last measurement of the year for 

‘South Mains Shaft’ in 2017 and 2018 and the last measurement of ‘Roving Crew Shaft’ 

in 2018. Publicly accessible data for recent post-mining water level monitoring is limited 

so this data from a well monitored closed mine complex was what existed to work with 

for validation at this stage of the project. The results of applying to model to these 

measurements, with lithology from nearby boreholes collected separately and coal 

extracted variable set to the final maximum value, indicated low percent errors between 

actual measured water level and the algorithm predicted value. Between these three 
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points of validation, the average percent error is 1.24%. With this low error, equation ‘K’ 

was determined to be included in the final GIS prediction model. 

 

Table 4 – Post-mining data test wells in Meigs Mine D-0354 used for validation of ANN 
equation ‘K’ with calculated percent errors. Average percent error was 1.24%. 

 

GIS Model for Algorithm Application 

 A tool for applying the selected prediction equation was successfully created in 

ModelBuilder of ArcGIS Pro version 2.2 following the structured outlined in the previous 

section ArcGIS Tool Building. Figure 25 is a screenshot of the final structure of the tool 

in ArcGIS Pro ModelBuilder. The tool successfully extracts and combines data from 

input mine permit data and mine extent shapefiles to form a complete table of variable 

data required to apply the developed prediction equation. From this constructed attribute 

table, the Python script is imported as a tool to run the prediction algorithm is able to 

reference specific columns in the attribute table to transform variables and apply the 

algorithm. The attribute table then has an added column with the predicted values of post-

mining water level at each point of input. These points are then compared with nearest 

Permit Well Date 

Measured 
Head  

(ft msl) 

Predicted 
Head  

(ft msl) 
Error 

(ft) 
Percent 
Error 

D-0354 
Roving 

Crew Shaft 10/22/18 456.84 443.42 13.42 2.94% 

D-0354 
South 

Mains Shaft 10/22/18 455.94 458.22 -2.28 0.50% 

D-0354 
South 

Mains Shaft 9/11/17 456.88 458.22 -1.34 0.29% 
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point of the area DEM to determine how far above or below the surface the predicted 

water elevation may reach with a final column added to the output points. 
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Figure 25 – A screenshot of the tool structure from within ModelBuilder in ArcGIS Pro. Inputs are blue ellipses, green ellipses are 
outputs, and the yellow squares are ArcGIS tools. Parameters are labeled, input and output, by the ‘P’ to the upper right of the shape. 
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Tool Design  

Development of the design for the ArcGIS tool began in a work flow chart that 

indicates required inputs, GIS tools to be run, and outputs of the tool. Figure 26 is the 

working flow chart for the tool development that is a simplified version of the tool and 

was used for reference in building the structure in ModelBuilder of ArcGIS Pro. On the 

left side of Figure 26 the box labeled ‘Start’ indicates all the required inputs by the user 

for the tool to run. The model flows from left to right, arrows indicating which tools the 

inputs are pulled into, represented by the yellow diamonds. The orange circles indicate 

shapefiles output by the processes run in the tool, grey circles indicating shapefiles that 

are created internally but not added as an output to the user’s map. 

 

 

Figure 26 – Work flow diagram for the ArcGIS tool, used as a guide to develop the model 
in ModelBuilder of ArcGIS Pro 
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The required inputs are well and borehole data in standardized excel sheets, pre- 

and post-SMCRA underground coal mine shapefiles, proposed coal mine shapefile, and a 

digital elevation model (DEM) raster of the state of Ohio. From these layers, tools in 

ArcGIS pull the variables needed to run the prediction equation for post-mining water 

level. The main table is created from the combination of the projected wells and borehole 

points, providing lithology to each well, as was done in the data extraction (Figure 7). 

The wells are the points at which the algorithm will be applied, so variables are spatially 

joined to the well points based on the nearest borehole. The other variable extracted is the 

amount of acreage mined within the 4-mile buffer of the proposed mine, determined 

through clipping the input shapes of pre- and post-SMCRA mines to the 4-mile buffer 

created around the proposed mine shape (Figure 8). The tool also calculates from the 

input data the bottom of coal elevation that is used when the prediction equation is 

applied to extrapolate the predicted post-mining water level. 

Once all variables are extracted and merged into a single attribute table for the 

point layer, the custom Python script tool for apply the prediction equation reads 

variables from defined columns and adds the predicted post-mining water level as another 

column in the table. For application of the prediction equation within the ArcGIS tool, 

several approaches were tested. With all variables in the same table, the possibility of 

using the tool ‘Calculate Field’ was explored. To use the ANN prediction equation in the 

field calculator required combining all variable transformations into a single equation. 

This leaves room for error in re-arranging a long complex polynomial equation. The 

alternative option to this approach was to develop a Python script that allows the equation 
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to be run in steps, to avoid errors in variable transformation calculations. This custom 

script reads in the variable table created by the first part of the ArcGIS tool, accesses 

defined columns for each variable, and outputs the table with predicted values added in a 

new column.  

Due to the importance of the format of the input data, an Excel sheet template will 

be provided for users to organize input data in the required way. If the template is not 

followed, variables will not be correctly labeled and result in either failure of the tool to 

run or inputs to the calculation of post-mining water elevation leading to an invalid result. 

 The final step in the tool process is the comparison of the points of predicted post-

mining water level to the DEM. The DEM is converted to points of elevation so that a 

spatial join to the nearest elevation point can be applied to the prediction points. With the 

nearest elevation value added to the variable table, the final field in the attribute table is 

filled with the field calculator tool as the surface elevation minus the predicted head 

elevation, providing a measure of how far above or below the surface the water level is 

predicted to be at post-mining. This field calculator step also includes a conversion of 

units, as the DEM (as most are) is in meters and the predictions are in feet mean sea level 

(ft msl). This is incorporated in the ModelBuilder so that conversion of the layer is not 

left to the user. 

Future work can be done on the creation of a spatially interpolated surface of the 

water table and areas of risk as a next step from the prediction points. The development 

of the prediction water elevation surface requires forming a continuous surface from the 

point data output from the algorithm. Several methods for spatial interpolation of the 
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post-mining water level surface were tested to compare errors. Kriging methods and 

inverse distance weighting are being explored for methods of interpolation.   

 If continued work would be done on developing method for spatial interpolation, 

the surface of the predicted post-mining water level, a set of built in GIS tools can run to 

compare the DEM and the coal mine raster to the post-mining water level surface. The 

comparison of the coal seam raster and the predicted post-mining water level surface 

would show areas of possible mine pool formation (Figure 27). The difference between 

values of the DEM and the predicated post-mining water level surface will determine 

areas at risk of possible discharge to the surface. These risk areas are the main output of 

the tool, as well as the prediction surface and points of predicted post-mining water level.  

 

 

Figure 27 – Diagram to display the different elevation surfaces to be compared for 
determining areas at risk of mine pools and surface discharge 
 

The model was then tested with a selected set of the post-SMCRA mine data for 

validation and trouble shooting. Once the model was running, a template map format was 

created that included the model for user download. As part of the packaged project with 

the map template, default layers are included for the required inputs, as well as templates 

Surface elevation 

Coal seam elevation 

Predicted post-mining water elevation 

Area risk of mine pool formation 

Area risk of mine pool discharge 



75 
 
for the Excel sheets required for inputting mine permit data, and a User’s Guide 

developed to include in step by step instruction for running the model. Successful running 

and packaging of the tool required trouble shooting and discovery of bug fixes, which are 

also included in the User’s Guide developed for the tool package (Appendix E).  

Model Validation 

 Testing of the GIS model was run with existing post-SMCRA mine data 

previously extracted for the data analysis. Various runs were done, but the final testing 

was done with the shapefile of permit D-2177 with 30 well points for prediction 

locations. Figure 28 displays the resulting map of this analysis run with points of 

prediction labeled with their predicted post-mining water level values. Output by the tool 

are the point shapefiles of boreholes and well points of post-mining water level prediction 

compared to the DEM. The predictions points are symbolized displaying blue circles as 

greater than zero distance to surface values and red circles as negative (or less than zero) 

distance to the surface. These red points of negative distance to the surface are the points 

of predicted post-mining water level at risk of discharging to the surface (Figure 28). In 

this test run on D-2177, four points of predicted post-mining water level have values 

greater than the surface elevation that indicate a possibility of surface discharge. 
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Figure 28 – Map of the final outputs of the ArcGIS model for producing points of 
predicted post-mining water level with a comparison to the DEM. The mine D-2177 and 
its permit data were used as a test for running the model. 
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Algorithm Application Python Script 

 While using existing tools, such as ‘Calculate Field’, in ArcGIS to apply the 

prediction equation were explored, it was ultimately determined the best way to 

incorporate the equation was to write a separate script to import into ArcGIS Pro 

ModelBuilder. Writing the script allowed for control of the exact process of extracting 

the correct values for each variable transformation and accurately applying the equation. 

Python 2.7 was used in writing the custom script. 

Geostatistical Analysis 

 This project examined running spatial analysis on the points of predicted post- 

mining water levels to produce a raster surface of post-mining water level in the area of 

the proposed underground mine. While several methods were explored for developing a 

spatially interpolated surface from points of predicated post-mining water levels, the 

main conclusion was that the existing distribution of data points, or well and boreholes, is 

not dense enough to develop a clear enough spatial relationship for interpolation. In 

addition to the lack of data for running a sufficient spatial interpolation, it was 

determined that spatial interpolation would not be possible to add into the automated 

steps of the ArcGIS tool due to parameters for the spatial analysis needing to be adjusted 

and tailored to each new set of data.  

Kriging Variogram Analysis 

 Kriging was tested on points of predicted post-mining water level developed from 

data extracted from the post-SMCRA mine permits. The test mine was selected based on 

the distribution and number of existing mine permit data, where D-2187 was the post-
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SMCRA mine permit with the best spatially distributed data with possibly enough points 

to run spatial interpolation, based on visual evaluation. Mine D-2187 had 161 well 

measurements, but only 30 individual wells with in the permitted area (Figure 29).  

 

 

Figure 29 – Map of the kriging test on mine D-2187 with result data from the analysis 
 

 In running the initial kriging test the model was optimized automatically using the 

geostatistical wizard in ArcGIS Pro. From this initial test, the kriging variogram was 

analyzed and it displayed a lack of the expected spatial autocorrelation within the data. 

The structure of a standard variogram, as displayed in Figure 30, there is a ‘range’ before 
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the model levels out in which the data within this distance is spatially correlated (McCoy 

et al., 2002; ESRI, 2019b). As seen in the variogram for the test kriging analysis, this 

range does not exist and thus the data is not spatial correlated enough to successfully run 

a statistical spatial interpolation. 

 

 

Figure 30 – Variogram analysis from the kriging test on D-2187. On top is a figure 
displaying the structure of a variogram analysis with a range indicating the data with 
spatial autocorrelation (ESRI, 2019b), and the actual analysis variogram at the bottom 
displaying a lack of the expected variogram structure. 
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Inverse Distance Weighting Results 

 Testing for use of inverses distance weighting (IDW) method of spatial 

interpolation was approached with the same data as kriging testing. The same 30 

individual well points of predicted post-mining water level of D-2187 used in the kriging 

test were used in the IDW test. Due to the results of the variogram analysis indicating the 

lack of spatial autocorrelation, the results of the IDW test was not was not expected to be 

useable. Several tests were run of the IDW to determine if the RMS could be reduced. 

IDW does not have a direct measure of error as it is only a weighting technique of 

determining values between points. IDW variables were slightly altered to determine is 

the analysis could be improved at all, power and the max/min number of neighbors. 

These variations did not result in much variation between tests. Figure 31 displays the 

default settings of IDW analysis on mine D2187. Appendix D contains expanded results 

from these IDW test. 
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Figure 31 – Map of IDW test A on mine D-2187, along with result data from the 
interpolation. 
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CHAPTER 5: DISCUSSION 

 In addition to the work done by Schafer (2018) and Twumasi (2018), this thesis 

project has completed the work required for the objectives of the OSMRE grant titled 

“Tools to predict the hydrological response and mine pool formation in underground 

mines”.  This project has successfully developed a multivariate statistically based 

empirical model for predicting post-mining water levels in underground coal mines of 

eastern Ohio.  

The methods for developing this model can be applied to develop models 

applicable in other regions with underground coal mines but differing geologic and 

hydrologic parameters.  

Project Outputs 

 Several outputs resulted from this project. The multivariate analyses have 

provided an improved understanding of the relationships between the many variables 

examined that influence the development of mine pool. In addition to this increased 

understanding, the ability to develop a prediction algorithm with reasonable error is a 

major output of the project. Along with the algorithm itself as an output is the model 

developed to apply the algorithm in ArcGIS Pro. While the model is specifically an 

empirical model not meant to develop deterministically derived values for post-mining 

water level, the model is useful as a planning tool for identifying possible areas at risk for 

surface discharging in areas where mining is being planned. Model validation indicated a 

low percent error of 1.24% in output predicted post-mining water levels when compared 
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to measured post-mining water levels, indicating that while it is an empirical model, the 

model can still produce predictions within reasonable error. 

Model Errors 

 Errors in the project outputs were kept as minimal as possible through tracking 

percent error in the selected algorithm. The final selected algorithm from the ANN 

analysis had an r-squared value of 0.996, a root-mean-squared-error of 18.03, and when 

validated with post-mining water level data had an average error at a 1.24%. 

Other areas of error possibilities are in the data itself as it is reported in the permit 

documents may influence the development of the model and its ability to predict post-

mining water levels. There is also the aspect of human error in manual data extraction 

from the PDF documents into the excel sheets that could also have influences the model 

development. A source of error could also be in the availability of quality data in terms of 

the lack of water extraction values (where coal extraction was used in proxy), lack of 

borehole lithology at the exact location of the well points, and lack of detailed 

precipitation data instead of an outdated areal annual average. Another source of error 

exists in the assumption made that the empirical relationships developed from water level 

data from a variety of depths can be extrapolated in to the mined coal layer.  

Comparison to Previous Studies  

Figure 32 compares the previous study PLSR results from Schafer, 2018 (A), and 

the re-analysis of this study (B). The re-analysis of PLSR reached 100% explained 

variance in 3 factors, same as with the previous run. The errors are similar, but the re-

analysis with a larger data set had slightly higher error. Coefficients and relationships of 
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the variables were also comparable to the previous run, indicating consistency in the 

determined relationships of variables. The correlation loading chart for the previous 

regression run and new regression displayed the same results in relationships of the 

variables (Figure 33). This re-run of the analysis validated the variable relationships with 

consistency between the expanded data set and the initial data set as well as a larger data 

set providing more reliability of the results. 
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Figure 32 – Comparison of predicted versus reference regression graphs of previous 
PLSR analysis by Schafer, 2018 (A) and of re-run analysis (B). While r squared value 
was not improved, consistency was maintained with a more reliable larger data set in 
(B). (Schafer, 2018) 
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Figure 33 – Comparison of correlations loadings graphs of previous PLSR analysis run 
by Schafer, 2018, (A) compared to the re-run analysis (B). Again this comparison 
displays consistency in the relationships of the variables. (Schafer, 2018) 

B 

A 
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Limitations 

 Throughout this project several issues were encountered that limited further 

model development. The majority of these issues came from the availability, quantity, 

and quality of the data extracted from the post-SMCRA mine permits.  

Data Availability 

A common theme throughout the project was the limitation of accessible and 

complete recent data sets. The greatest limitation of data was the lack of evenly 

distributed and accurately recorded borehole and well data within the coal mining 

permits. Ohio code regulation for pre-mining data collection only requires one borehole 

for every 160 acres and does not define specific measurement requirements for well 

monitoring (Ohio Administrative Code, 2016). This lack of regulation or requirement for 

constant monitoring methods, such as piezometers, results in poorly distributed data over 

both time and area of the mine. 

Precipitation data used as a variable in algorithm building was not a specific as 

desired for the time periods and areas of wells being analyzed. The most complete and 

comprehensive precipitation data easily accessed was an annual precipitation map for the 

state of Ohio within the years 1931-1980 (ODNR Division of Water Resources, 1980). 

Though the change in regional precipitation was deemed minimal and not likely to vary 

too much over the year to significantly affect the potentiometric heads of wells, the data 

set could still be outdated. 

With mine specific data, permit files were not only non-digital formats prior to 

this project, but data collection was not consistent or uniform. This made data collection 
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complicated and introduced more estimation and possible errors in the algorithm 

outcome. 

Data Quality 

 One issue encountered was the lack of consistent and quality data from the mine 

permits and data related to the mining activities, particularly with differences between 

older mine permits and new ones. Mine permits applications have only recently been 

digitized, so the data available for this study was in PDF format and often in the form of 

scanned handwritten documents. This resulted in difficulty extracting and compiling data, 

introducing more error than when first recorded. The consistency of when data was 

collected was also poor in many cases, such as the descriptions for lithology changing 

within the same mine, time of water measurements not consistent, coordinate projections 

of data not consistent within the same mine or not recorded at all, lack of measurements 

post-mining, etc.  

While SMCRA requires characterization of hydrology and geology of the area to 

be mined and monitoring post-mining for reclamation purposes, the state of Ohio 

regulations for implementing SMCRA are not defined enough to provide sufficient 

quality data for reliable predictions or monitoring. 

Limits to Spatial Interpolation 

 Due to the limited quality data, exploration of spatial interpolation of the 

predicted post-mining water levels was restricted. While spatial interpolation techniques 

were run on the best spatially distributed data set for the project post-SMCRA mines, the 

analyses determined the data did not have a clear enough spatial relationship to be a 



89 
 
reliable interpolation. Continued research is required to determine the number of and 

density per area of prediction points required to produce an interpolated surface with a 

reasonable range of error. This information could inform future policy on pre-mining data 

collection. 

Model Use and Application 

The empirical predictive model developed in this project can be directly applied 

to future underground mining planned within Ohio and surrounding areas of similar 

hydrologic and geologic characteristics. The model has been based on publicly available 

data, so it has remained accessible for public download and use. The packaged map 

template with the model along with default files and Excel sheet templates are hosted on 

www.watersheddata.com, along with additional resources such as the User’s Guide, a 

fact sheet, and links to this thesis and the previous theses by Schafer (2018) and Twumasi 

(2018).  



90 
 

CHAPTER 6: CONCLUSIONS 

Project Goals 

This thesis project has addressed the lack of a science-based method for 

determining post-mining water levels in undergrounds mines through the development of 

a multivariate analysis of significant parameters, used to form an empirical model that 

produces estimated post-mining water levels at well locations. The final algorithm 

selected for use in the model was determined to estimate water levels within a reasonably 

usable error within 1%.  

The methods developed during the work on this project provide the possibility of 

developing similar models for different areas around the globe. If similar data for 

characterizing the area hydrology and geology can be collected, the analysis to develop 

the prediction algorithm can be re-run and the new area-specific algorithm can be input 

into the model. Results will depend on the quality and density of data collected, no matter 

the location.  

The relationships discovered between the different hydrologic and geologic 

parameters have expanded on the overall understanding of how these underground mines 

effect the complex systems of groundwater. More research is required to determine why 

some of these variables are more significant than others.  

Current Regulatory Implications 

 Currently, the requirements for data collection in the permitting process for 

underground coal mines in Ohio does not collect enough data for a thorough evaluation 

of area hydrology. While requirements for surface mining is slightly more defined, 
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underground mines only require “...a minimum of one test hole per one hundred sixty 

acres” and does not define a requirement for well monitoring density (Ohio 

Administrative Code, 2016). While predictions have been made on the available data, 

reliability of predictions would be improved if regulations required higher density data 

collection for mine permit applications. Data could also be improved by the installation 

of piezometers in the mined layers to consistently monitor water levels, as is done in 

areas of coal mining in Pennsylvania. The current requirements, as displayed by the 

struggles with this project, are not sufficient for complete characterization of the area 

hydrology and lithology. 

Continued Work 

 With higher density and quality data, this model can be improved upon. 

Continued work will include improvement of the model development with additional 

quality data but also expansion of the model. Work can also be done to explore the 

possibility of spatial interpolation methods working with a data set of higher number and 

higher density data. A study could be done to determine a range of necessary density of 

data and number of points to produce an interpolated surface with low error. 

 In addition to further developing the model and exploring spatial interpolation 

possibilities, the next step to predicting if a mine will discharge is if that discharge would 

be pollutional. This would require determining additional variables to the predictive 

model related to surface water chemistry. 

 This prediction model is specific to the coal fields analyzed in Ohio, but methods 

to develop the predictive model could be used to translate the prediction model to another 
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area of differing geology and hydrology. In addition to applying to another area, the full 

extent of this model predictability would need to be determined. Continued work could 

be looking at how far this model can predict post-mining water levels outside of the state 

of Ohio but still with in similar lithology. 

 Methods used to develop this model and approach to predicting water levels could 

be applied outside of underground mining as well. Other issues in understanding the 

multivariate relationships impacting the change in groundwater levels could adapt the 

approaches used in this project to address issues in other disciplines outside of mining.  
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APPENDIX B: ANN ANALYSIS RESULTS AND VALIDATION 
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Polynomial Net (GMDH) Test 'K' 
GMDH Type: Advanced 

Max. Variables in Connection: X1,X2,X3 
Ma. Product Term in Connection: X1X2X3 

Max. Variable Degree in Connection:  
X3 

Max. Number of Survivors in First 
Layer: 11 

Schedule Type: Asymptotic 
Decrease in Mas. Number of 

Survivors: Gentle   
Model Optimization: Smart 

Selection Criterion: FPE  
 

Number of inputs: 11 
Number of outputs: 1 

Number of training patterns: 2872 
Number of test patterns: 0  

 
Layers constructed: 17 
Best criterion value: 0.003981 

Best formula: Y=0.1*X7-4.9E-002*X11+9.2E-002-2.1E-
002*X4+1.9E-002*X9+0.41*X1-1.1E-
002*X3+6.5E-002*X6-0.1*X10+4.3E-
002*X5+0.56*X2-0.37*X1^2-
0.38*X2^2+2.5E-002*X11^2-0.14*X2^3-
6.5E-002*X11^3+0.84*X1*X2-
0.24*X1*X11+0.36*X2*X11+3.2E-
002*X1*X2*X11-1.9E-004*X6^2+4.1E-
002*X5*X6+4.3E-002*X7^2+4.E-
002*X10^2-2.6E-002*X7^3+5.E-002*X10^3-
0.14*X7*X10-1.1E-002*X9^2-1.6E-
002*X9^3-2.5E-002*X2*X9+1.3E-002*X5^2-
2.5E-002*X6^3-1.4E-002*X1^3+2.E-
002*X1*X7+3.1E-002*X6*X10+2.7E-
002*X1*X3+1.4E-002*X9*X11+2.9E-
002*X2*X4+1.3E-002*X8^3-1.6E-
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002*X8*X11+6.7E-003*X4^2+4.5E-
003*X1*X6  

 
Legend: X1=2.*(Surf_Elev (msl)-545.)/835.-1.  

X2=2.*(Bot_Elev (msl)-244.04)/1055.96-1.  
X3=2.*(Overb_Thick (ft)-65.)/638.1-1.  
X4=2.*(MinedCoal_Thick (ft)-.07)/11.69-1.  
X5=2.*(Shale/Clay_Thick (ft)-.35)/552.55-1.  
X6=2.*Sand_Thick (ft)/262.3-1.  
X7=2.*Lime_Thick (ft)/204.97-1.  
X8=2.*TCoal_Thick (ft)/33.23-1.  
X9=2.*Accum_coalextr (Mm^3)/138.61-1.  
X10=2.*(4Mile_Buffer (acres)-
2061.)/108987.5-1.  
X11=2.*(AvgAn_Precip (in)-37.5)/3.7-1.  
Y=2.*(PotentioHead (msl)-400.)/932.-1.   

Most significant variables: Surf_Elev (msl)  
Bot_Elev (msl)  
Overb_Thick (ft)  
MinedCoal_Thick (ft)  
Shale/Clay_Thick (ft)  
Sand_Thick (ft)  
Lime_Thick (ft)  
TCoal_Thick (ft)  
Accum_coalextr (Mm^3)  
4Mile_Buffer (acres)  
AvgAn_Precip (in)  

 
Network type: GMDH 

Patterns processed:  2872  
 

Output: C1 
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R squared: 0.9906 
r squared: 0.9906 

Mean squared error: 324.8997 
Mean absolute error: 12.3227 
Min. absolute error: 0.0014 
Max. absolute error: 147.93 

Correlation coefficient r: 0.9953 
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APPENDIX C: PYTHON SCRIPT 

Python script for applying selected ‘K’ run of artificial neural network analysis in 

Neuroshell. Script was written in Python 2.7 in IDLE: 

 

######################################################################## 

#  ANN_testing_script.py 

#  Objective: Testing script for applying algorithm to variables to predict post-mining 

water levels 

#  Date created: September 27th, 2018 

#  Last edited: February 15th, 2019 

#  Written by: Rebecca Steinberg for M.S.E.S. Master's Thesis, OSM Mine Pool project 

######################################################################## 

import arcpy 

from arcpy import env 

import os 

import math 

import csv 

 

#Get parameters 

editing_table = arcpy.GetParameterAsText(0) 

calculated_table = arcpy.GetParameterAsText(1) 
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def main () : 

 

   #Loop for adding predicted value 

   with open(editing_table, "r") as csvfile, open(calculated_table, "w") as writeFile: 

        var_table = csv.reader(csvfile, delimiter=',') 

        new_table = csv.writer(writeFile, delimiter=',') 

         

        #read in headers 

        new_table.writerow(next(var_table)) 

 

        #loop for reading each line 

        for row in var_table: 

            

           #read in sample line from table 

           samplex = row 

            

           #switch to float                      

           #transformations of variables 

           surf_T = (2.0*(float(samplex[6])-545.0)/835.0)-1.0 #X1 

           bott_T = (2.0*(float(samplex[7])-244.04)/1055.96)-1.0 #X2 

           over_T = (2.0*(float(samplex[10])-65.0)/638.1)-1.0 #X3 

           tmcoal_T = (2.0*(float(samplex[11])-.07)/11.69)-1.0 #X4 
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           shcl_T = (2.0*(float(samplex[12])-0.35)/552.55)-1.0 #X5 

           sand_T = (2.0*float(samplex[13])/262.3)-1.0 #X6 

           lime_T = (2.0*float(samplex[14])/204.97)-1.0 #X7 

           tcoal_T = (2.0*float(samplex[15])/33.23)-1.0 #X8 

           accum_T = (2.0*float(samplex[16])/138.61)-1.0 #X9 

           buffer_T = (2.0*(float(samplex[17])-2061.0)/108987.5)-1.0 #X10 

           precip_T = (2.0*(float(samplex[8])-37.5)/3.7)-1.0 #X11 

 

           X1 = surf_T 

           X2 = bott_T 

           X3 = over_T 

           X4 = tmcoal_T 

           X5 = shcl_T 

           X6 = sand_T 

           X7 = lime_T 

           X8 = tcoal_T 

           X9 = accum_T 

           X10 = buffer_T 

           X11 = precip_T 

 

           #prediction equation 
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pot_head_T =(0.1*X7)-(0.049*X11)+(0.092)-

(0.021*X4)+(0.019*X9)+(0.41*X1)-(0.011*X3)+(0.065*X6)-

(0.1*X10)+(0.043*X5)+(0.56*X2)-(0.37*X1**2)-

(0.38*X2**2)+(0.025*X11**2)-(0.14*X2**3)-(0.065*X11**3)+(0.84*X1*X2)-

(0.24*X1*X11)+(0.36*X2*X11)+(0.032*X1*X2*X11)-

(0.00019*X6**2)+(0.041*X5*X6)+(0.043*X7**2)+(0.04*X10**2)-

(0.026*X7**3)+(0.05*X10**3)-(0.14*X7*X10)-(0.011*X9**2)-(0.016*X9**3)-

(0.025*X2*X9)+(0.013*X5**2)-(0.025*X6**3)-

(0.014*X1**3)+(0.02*X1*X7)+(0.031*X6*X10)+(0.027*X1*X3)+(0.014*X9*

X11)+(0.029*X2*X4)+(0.013*X8**3)-

(0.016*X8*X11)+(0.0067*X4**2)+(0.0045*X1*X6) 

                  

           #transform back potentiometric head 

           pot_head = (((pot_head_T+1.0)*932.0)/2.0)+400.0 

           samplex[18] = pot_head 

 

           new_table.writerow(samplex) 

                     

        csvfile.close() 

         

main() 
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APPENDIX D: GEOSTATISTICAL ANALYSIS 

Results Table from IDW tests 

 Default Powers Neighbors 

Test A B C D BA CA DA 

Power 2.00 1.74 1.50 1.30 1.32 1.57 1.51 

Neighborhood Type Standard Standard Standard Standard Standard Standard Standard 

Max Neighbors 15 15 15 15 12 12 11 

Min Neighbors 10 10 10 10 10 8 8 

Angle 0 0 0 0 0 0 0 

Count 30 30 30 30 30 30 30 

Mean 21.75 22.01 22.14 22.09 22.82 22.31 22.63 

Root-Mean-Square 82.76 82.57 82.76 83.23 82.79 81.88 81.85 

 

Maps 

 



155 
 

 



156 
 

 



157 
 



158 
 

 

 



159 
 

 



160 
 

 

 

  



161 
 

APPENDIX E: USER’S GUIDE 

The following document is available for download at 

http://watersheddata.com/MinePool_Study.aspx. 

 

User’s Guide for Model to Predicted 

Post-Mining Water Levels 

3/15/2019 

 

1. Background 

There is a need for an improved method for predicting post-mining water levels in 

underground coal mining. The Surface Mining Control and Reclamation Act (SMCRA) 

permitting requirements include estimating water levels post mining as part of 

characterizing the area hydrology. The use of ‘top of coal’ has been proven, by flooded 

mines and recent hydrologic research, to be an insufficient estimate of post-mining water 

level.  As mine companies are required by SMCRA to mitigate/remediate environmental 

impacts of flooded mines, this insufficient estimation cost companies money. More 

reliable prediction can save money on post-mining reclamation by preventing the 

environmental impacts from happening to begin with. 

The goal of this project was to develop an empirical predictive model of post-mining 

water level, implemented in ArcGIS Pro. Using data from the proposed underground coal 

mine permit, the model returns points of predicted post-mining water levels and can be 

compared to a Digital Elevation Model (DEM) to identify areas at risk of surface 

discharge from mine pools. 

 

1.1 Original Data Sources 

http://watersheddata.com/MinePool_Study.aspx
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The project team requested public permit data from 28 permitted underground coal 

mines in Ohio. Spatial, hydrologic, and geologic measurements were gleaned from the 

permits, yielding usable data from 15 mines.  Additional data and/or GIS layers were 

downloaded from Ohio Department of Natural Resources, Division of Mineral Resource 

Management (ODNR-MRM), Geological Survey (ODNR-GS), and Water Resources 

(ODNR-WR),  US Department of Labor Mine Safety and Health Administration 

(MSHA), National Oceanographic and Atmospheric Agency (NOAA),  and Ohio 

Geographically Referenced Information Program (OGRIP).   

 

1.2 Statistical Analysis 

Once gathered, multivariate data analyses were run using The Unscrambler X and 

Neuroshell 2 to develop a prediction algorithm for post-mining water levels. This lowest 

error resulting algorithm was included in the tool. Table X displays the selected 

algorithm, with each variable transformation. Each of the variables required in the inputs 

for running the tool are required due to their use in running the prediction algorithm. 

More details on the analyses are provided in the three theses linked on the mine pool 

study webpage of Watershedadata.com 

(http://watersheddata.com/MinePool_Study.aspx). 

 

  

http://watersheddata.com/MinePool_Study.aspx
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Table 5 – Results from Neuroshell test run ‘K’  

Polynomial Net (GMDH) Test 'K' 
Best formula: Y=0.1*X7-4.9E-002*X11+9.2E-002-2.1E-002*X4+1.9E-

002*X9+0.41*X1-1.1E-002*X3+6.5E-002*X6-
0.1*X10+4.3E-002*X5+0.56*X2-0.37*X1^2-
0.38*X2^2+2.5E-002*X11^2-0.14*X2^3-6.5E-
002*X11^3+0.84*X1*X2-
0.24*X1*X11+0.36*X2*X11+3.2E-002*X1*X2*X11-
1.9E-004*X6^2+4.1E-002*X5*X6+4.3E-002*X7^2+4.E-
002*X10^2-2.6E-002*X7^3+5.E-002*X10^3-
0.14*X7*X10-1.1E-002*X9^2-1.6E-002*X9^3-2.5E-
002*X2*X9+1.3E-002*X5^2-2.5E-002*X6^3-1.4E-
002*X1^3+2.E-002*X1*X7+3.1E-002*X6*X10+2.7E-
002*X1*X3+1.4E-002*X9*X11+2.9E-
002*X2*X4+1.3E-002*X8^3-1.6E-002*X8*X11+6.7E-
003*X4^2+4.5E-003*X1*X6   

Variable Transformations: X1=2.0*(Surface Elevation (msl) -545.0)/835.0-1.0  
X2=2.0*(Bottom Coal Elevation (msl) - 244.04)/1055.96-
1.0  
X3=2.0*(Overburden Thickness (ft) -65.0)/638.1-1.0  
X4=2.0*(Mined Coal Thickness (ft) - 0.07)/11.69-1.0  
X5=2.0*(Shale/Clay Thickness (ft) - 0.35)/552.55-1.0  
X6=2.0*Sandstone Thickness (ft)/262.3-1.0  
X7=2.0*Limestone Thickness (ft)/204.97-1.0 

 
X8=2.0*Total Coal Thickness (ft)/33.23-1.0 

 
X9=2.0*Accumulative Coal to Extract (Mm^3)/138.61-
1.0  
X10=2.0*(Underground Mining in 4-Mile Buffer (acres)-
2061.0)/108987.5-1.0  
X11=2.0*(Average Annual Precipitation (in) - 37.5)/3.7-
1.0  
Y=2.0*(Potentiometric Head (msl) - 400.0)/932.0-1.0   

R squared: 0.9906 
Mean squared error: 324.8997 

Mean absolute error: 12.3227 

Min. absolute error: 0.0014 
Max. absolute error: 147.93 

Correlation coefficient r: 0.9953 
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2. Tool Structure 

2.1 Data formats  

For the tool to function smoothly, the completeness and formatting of the input data 

is most important. The provided pre-formatted Excel Spreadsheets allow for inputting 

raw data from proposed mine permit applications as specified, or the tool will not run 

correctly.  Data formats for each column must be followed exactly to ensure accurate data 

extraction when imported to ArcGIS. All columns must be filled out with data as well or 

calculation errors will occur when the tool applies the prediction algorithm.  

Consistent coordinate projections in collection of data is also necessary, or at least 

clear recording of the projection used in collecting XY coordinates so the correct 

projection can be selected when running the tool. 

 

2.2 Required inputs  

It will be necessary for the user to gather and prepare site specific data for 

analysis of the proposed mine.  See Section 3 for instructions on formatting.  The five 

required files that are: 

1) Well Excel spreadsheet: Permit/Mine ID, well ID, XY coordinates, potentiometric 

head (ft msl), surface elevation (ft msl), bottom of coal elevation (ft msl), average 

annual precipitation (in).  

2) Borehole Excel spreadsheet: Permit/Mine ID, XY coordinates, overburden 

thickness (ft), mined coal seam thickness (ft), shale/clay thickness (ft), limestone 

thickness (ft), total coal thickness (ft), accumulative coal extracted (Mm^3).  

3) Study mine: Shapefile of proposed new mine extent. 

4) Abandoned Underground Mines (AUM): Pre-SMCRA shapefile of mined out 

extents.  

5) Underground Mine Extents (UG): Post-SMCRA shapefile of mined out extents. 
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2.3 Tool functions 

Figure 1 displays the general flow of the ArcGIS Pro model built to extract 

variables and apply to prediction algorithm to produce points of predicted post-mining 

water level. The model runs these tools automatically and do not require running by the 

user. The box on the left displays the required inputs for the tool by the user and the final 

box on the right displays the final output of the tool. In between the start and end boxes 

are the tools used and the layers created in extracting variables and applying the 

prediction algorithm. 

 

 
Figure 34 – Work flow diagram that describes the layers and tools used in the 
construction of the tool in ArcGIS Pro Model Builder. 
 

2.4 Direct outputs 

The tool produces several shapefiles that are automatically added to the map once 

the tool is run: well shapefiles, borehole shapefiles, calculated points, and points of 

predicted head compared to the area DEM. These outputs are further described in Section 

4.  
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3. Prepare Data 

Proper data preparation is essential for successful execution of the model. Three (3) 

GIS polygon shapefiles are required:  

1) Abandoned Underground Mines (AUM): Pre-SMCRA Ohio abandoned coal 

mines.  

a. Included in the tool Template, however, it is only current to the end of 

2018, when the layers were downloaded. This layer is created and 

maintained by ODNR, and tool users may want to redownload and 

replace the included shapefiles with the most current versions from 

https://gis.ohiodnr.gov/MapViewer/?config=OhioMines. Click the “?” 

icon in the mine viewer application, then click the DATA tab to access 

downloads.  

2) Underground Mine Extents (UG): Post-SMCRA permitted mine extents.  

a. Included in the tool Template, however, it is only current to the end of 

2018, when the layers were downloaded. This layer is created and 

maintained by ODNR, and tool users may want to redownload and 

replace the included shapefiles with the most current versions from 

https://gis.ohiodnr.gov/MapViewer/?config=OhioMines. Click the “?” 

icon in the mine viewer application, then click the DATA tab to access 

downloads.  

3) Extent of the proposed new mine: Shapefiles of proposed mine extent created 

from maps and information in the permit application. 

a. The user may have to create this shape if the shapefile layer is not 

already created or accessible from the data for the permit application.  

Also required input for the tool are two data tables must be created from data 

required in or calculated from the permit application, and other sources. The formatted 

Excel Spreadsheets are provided in the template download package at 

https://gis.ohiodnr.gov/MapViewer/?config=OhioMines
https://gis.ohiodnr.gov/MapViewer/?config=OhioMines
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http://watersheddata.com/MinePool_Study.aspx (Download instructions follow in 

Section 4).  

Special attention must be paid to units to assure that all values are properly 

converted to the units specified in the provided formatted Excel spreadsheet files. 

Likewise, consider the coordinate systems used in collection of XY data, and make sure 

all final shapefiles and XY data are aligned in the same projection, as these tables will be 

plotted to point shapefiles in the model process. All columns must have data for the tool 

to function, no null or zero values. If the data collected does not have all values for 

variable in Excel spreadsheets, do not include that point of data.   

1.) Well Excel Spreadsheet: sheet containing hydrologic data extracted from mine 

permits used to predict post-mining water level by the ArcGIS tool 

a. Permit/Mine ID, Well ID, XY coordinates, potentiometric head (ft msl), 

surface elevation (ft msl), bottom elevation (ft msl): extracted from well 

logs and materials submitted with the permit application.  

b. Average annual precipitation (in): retrieved from various sources.  The 

user can check NOAA or other weather data collection entities to arrive 

at the best number for their location. If local rainfall values are not 

available, enter the state average precipitation of 37.57 inches as a 

default.  

2.) Borehole Excel Spreadsheet: sheet containing geologic data extracted from 

mine permits used to predict post-mining water level by the ArcGIS tool 

a. Permit/Mine ID, Borehole ID, XY coordinates, overburden thickness (ft), 

mined coal seam thickness (ft): data directly derived from the borehole 

logs required for the permit application.   

b. Shale/clay thickness (ft), limestone thickness (ft), sandstone thickness 

(ft), and total coal thickness (ft): calculated by adding together the 

associated layers from the overburden to get a total thickness 

http://watersheddata.com/MinePool_Study.aspx
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stratigraphic record.  Only layers within the overburden above the mined 

coal seam are considered.  

c. Accumulative coal extracted (Mm^3): the volume of coal the mine is 

expected to produce, which is a required value for the permit application.   

When data collection for the formatted Excel well and borehole spreadsheets are 

complete for the proposed mine, each spreadsheet must be saved as a comma 

separated value (.csv) file (Figure 2).   

 

 
Figure 35 – Screenshot to show saving the data Excel sheets as the correct file format: 

CSV (Comma delimited) 
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4. Steps for Running the Tool 

4.1 Downloading and Opening ArcGIS Pro Mine Pool Model Template  

The ArcGIS Pro template map that hosts the prediction tool is available for 

download at http://www.watersheddata.com/MinePool_Study.aspx.  The “Mine Pool 

GIS Tool Package” folder (Figure 3) is a 

folder containing the download links for 

the Map Template 

(Mine_Pool_Prediction_Model_Map.aptx), 

the Well Excel Spreadsheet, and Borehole 

Excel Spreadsheet. We recommend 

preparing the Well and Borehole Excel 

Spreadsheets, included in the download, 

prior to opening the tool in ArcGIS Pro 

(Section 3). The map contains the tool, 

script that runs the prediction algorithm, 

shapefiles of surrounding underground 

mines, DEM, and default required layers as examples. 

When data is compiled into the spreadsheets and saved in the project folder, open the 

.aptx file in ArcGIS Pro by double clicking on the file or by selecting “Open Project” 

from the front screen of ArcGIS Pro. The map may take a bit of time to load the template 

map and included layers. 

 

4.2 Setting Up Project 

Once the project has been created, users can add their required data to the map through 

the “add data” function in ArcGIS Pro (Figure 4). The Underground Mine Extents (UG) 

shapefile, Abandoned Underground Mines (AUM) shapefile, and the DEM for the state of 

Ohio raster are already included in the table of contents. The user will need to add the 

proposed mine shapefile and the borehole and well csv tables. The “add data’ function 

Figure 36 – Screenshot displaying the 
location of the download link to click on 
Watersheddata.com to download the 
prediction tool. 
 

Figure 37 – Screenshot displaying the 
location of the download link to click on 
Watersheddata.com to download the 
prediction tool. 

http://www.watersheddata.com/MinePool_Study.aspx


170 
 
allows the user to locate the folder where files are saved. It is suggested that once added, 

the user files be saved to the project folder/geodatabase created by the template project for 

easy locating of data. This is done by right clicking on the added layers in the table of 

contents and selecting “Export features” (Figures 5). 

 

 
Figure 38 – Screenshot displaying the location of the ‘add data’ function in ArcGIS Pro 

to locate and add user input files. 
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Figure 39 – Screenshot displaying how to find ‘Export features’ function so that user 

added layers can be saved to the Project database or in the working Project folder. 
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Once the required inputs are added to the table of contents, the prediction model 

can be opened from the project’s toolbox. The project’s toolbox can be found in the 

Catalog tab several ways (Figure 6). If closed the Catalog tab can be reopened from the 

“View” tab in the main ribbon at the top of the screen. The template toolbox contains: 

1) “Model for Predicting Points of Post-Mining Water Level in Ohio”: the 

prediction tool  

2) “Application Prediction Algorithm”: Python script for applying the 

algorithm. No interaction required by the user, included for the model to 

reference and if the user wishes to adapt the tool with a new algorithm. 

Double click, or right click and select ‘open’, on the prediction tool to open it in the 

Geoprocessing tab, also shown in the screen shots of Figure 6.  

 

   
Figure 40 – Screenshots displaying how to locate the prediction tool within the Project 
toolbox. Both screenshots are different ways of finding the toolbox within the Catalog 
window. 
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4.3 Running the Tool 

With the tool open, options 

for inputs and outputs are 

displayed filled with the defaults. 

Figure 7 shows the layout of the 

tool when opened in the 

geoprocessing window. See 

previous Section 3 for more 

details. 

The inputs need to be 

changed to inputs added to the 

map by the user. ‘Inputs 

Required’ from the user are: 

1) Working Folder: user 

MUST select the project 

folder where the toolbox 

and geodatabase are 

stored for the tool to run 

2) Well Excel Sheet: csv 

formatted sheet that user has added to the map 

3) Borehole Excel Sheet: csv formatted sheet that user has added to the map 

4) Proposed Mine: shapefile of proposed mine extent that user has added to the map 

As well as the ‘Included Default’ inputs: 

5) Pre-SMCRA Mines: recent underground mines layer from ODNR, default 

included 

6) Post-MSCRA Mines: abandoned underground mines layer from ODNR, default 

included 

Figure 41 – Screenshot displaying how the tool 
looks when opened in the geoprocessing window, 
with the user required inputs labeled at the top, final 
required inputs with defaults, and outputs labeled at 
the bottom. 
 

Figure 42 – Screenshot displaying how the tool 
looks when opened in the geoprocessing window, 
with the user required inputs labeled at the top, final 
required inputs with defaults, and outputs labeled at 
the bottom. 
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7) DEM: digital elevation model in meters for area of proposed mine, state of Ohio 

DEM included default 

Outputs are given default names and a default location of the scratch geodatabase. It 

is suggested that the user change the names and locations of the outputs so they can be 

easily found, but the main outputs will be added to the map once the tool is run 

regardless.  

Descriptions for each required input can be seen in the metadata when viewing the 

tool in the toolbox but can also be seen in a pop-up window if the user hovers over the ‘i’ 

symbol to the left of each input title. 

 

4.4 Interpreting Tool Outputs 

The final outputs of the tool are added to the map but are also saved to the location 

selected by the User in the initial set up for running the tool. The shapefiles added (and 

default names) to the map by the tool are:  

1) Projected well points (well_pts.shp) 

2) Projected borehole points (borehole_pts.shp) 

3) Calculation points with all variables extracted (cal_pts.shp) 

a. All variables required to run the prediction algorithm are displayed in the 

attribute table, along with the final column providing the predicted post-

mining water level 

4) Calculation points with comparison to the area DEM (calc_pts_SpatialJoin.shp) 

a. Resulting attribute table displays values for the initial measured 

potentiometric head, calculated coal seam elevation, value of predicted 

head, DEM points converted to feet, and the final value comparing the 

surface elevation to the predicted head (Figure 8). 
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Figure 43 – Screenshot of final outputs from running the prediction tool, highlighting a 
point of risk that when clicked displays the data results in a pop up window. 
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4.5 Changing Symbology for Output Layers 

Once the tool is run and layers are added to the map, symbology for interpreting the 

layers can be edited to easily identify which well points of predicted post-mining water 

level indicate areas at risk for surface discharge. This can be done by right clicking on the 

final output layer (#4 described above) and selecting ‘Symbology’ to open the symbology 

tab, or by clicking on the layer to highlight it and the symbology tab appears in the header 

tab of ArcGIS Pro (Figure 9). Once editing the symbology, there are various ways to 

display the point data but the suggestion for tool users is to define symbology for value 

ranges of points below the DEM (positive “Dist to Surface from Predicted Head” values) 

and above the DEM (negative “Dist to Surface from Predicted Head”  values). At the top 

of the symbology tab, select the “Dist to Surface from Predicted Head” as the value to be 

symbolized by, the select ‘ranges’ as the type of symbology and pick 2 for number of 

ranges (Figure x). Ranges will be automatically assigned but can be edited by double 

clicking in the range box. Enter ‘0’ in the first box to indicate points that have a negative 

value indicating water level above the DEM. The second box should already be the 

highest value, thus representing the values below the DEM, but can also be changed. The 

symbol on the left can then be double clicked to change the size and color of the points to 

indicate on the map areas of risk for surface discharge (Figure 10). 
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Figure 44 – Screenshots to display how to locate the symbology function for the final 
output layer. The left image shows right clicking on the layer in the table of contents. The 
right image shows when the layer is highlighted (one click) in the table of contents the 
main ribbon tab for ‘Feature Layer’ > ‘Appearance’ > ‘Symbology’> ‘Graduated colors’. 
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Figure 45 – Screenshots displaying how to adjust the symbology for the final output 
layer. 1. Selecting the ‘Graduated colors’ for symbology type. 2. Select field to symbolize 
by, the final value that compares the predicted head to the DEM: ‘Dist to Surface from 
Predicted Head’. 3. Select 2 for the number of classes. 4. Manually change the upper 
value for the lower of the ranges to 0. Finally, double clicking on the actual symbol will 
allow the next window to appear where the user can select shape, size, and color for each 
of the different ranges. Make sure to ‘Apply’ the symbology. 
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5. Trouble Shooting 

5.1 Points not projecting correctly 

If the model runs well 

but the resulting points are 

not in the area of the 

proposed mine as they should 

be, it is likely the default 

projection of the tool does not 

match the projection of the 

input data’s XY coordinates. 

This may be fixed by setting a 

projection in the Environment 

of the tool prior to running 

(Figure 11). If the data is in a 

latitude longitude format the 

data will need to be converted 

to XY coordinates.  

 

5.2 Model Failure 

The most likely error to 

occur is that user data was not 

input correctly and has caused 

the tool to fail. The first 

suggestion is to re-check the 

data entered in the Excel spreadsheets. None of the values should be zero or null values. 

The units of the entered data should also be checked so that they match the required units 

for the tool, as indicated in the Excel templates and in the previous descriptions in this 

User’s Guide. Another possibility is that the ‘Working Folder’, the first input required 

Figure 46 – Screenshots showing how to set the 
coordinate system in the environments settings for the 
prediction tool so that it matches the user’s data. The 
most common ones used in the applicable area of the 
tool are highlighted on the left. 
 

Figure 47 – Screenshots showing how to set the 
coordinate system in the environments settings for the 
prediction tool so that it matches the user’s data. The 
most common ones used in the applicable area of the 
tool are highlighted on the left. 
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when viewing the tool in the geoprocessing, was not changed from the default value that 

the tool cannot run with. 

 

5.3 Model output values unreasonable 

If the results from running the tool provided highly unreasonable values, the first 

suggestion is to re-check the data entered in the Excel spreadsheets. None of the values 

should be zero or null values. The units of the entered data should also be checked so that 

they match the required units for the tool, as indicated in the Excel templates and in the 

previous descriptions in this User’s Guide. If the units are correct and the data has no 

nulls or incorrect zeros, it may be that the users data is not correct or the algorithm is not 

applicable to the area the data was collected for.  

 

5.4 Model Invalid when opened 

If when opening the tool in the geoprocessing tab, it initially displays a red x and 

states the ‘model is invalid’, its likely there is a connection lost in the model builder 

structure of the tool. There is the possibility with inconsistencies of Model Builder that 

the tool itself may break down. One common issue in testing the tool was losing the 

connection to the tool that runs the prediction algorithm that is included in the flow of 

Model Builder. The Python script that runs the variable transformations and applies the 

prediction algorithm is included in the project toolbox, as described in Section 4.2.  

To fix this issue, simple editing will have to be done directly to the tool in Model 

Builder. To open this, view the tool in the Catalog view of the toolbox, right click and 

select ‘edit’ (Figure 12). This will open an editing window of Model Builder that may 

look like the screen shot in Figure 13. Once open, if the model looks like Figure 13, 

select the ‘Application Prediction Algorithm’ and hit delete (Figure 14). From the 

Catalog window, open the toolbox and drag the script tool ‘Application Prediction 

Algorithm’ into the open Model Builder window (Figure 15). Next, the connections to 

the model and the script tool must be repaired (Figure 16). Click and drag from the 
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‘editing_table.csv’ variable to the ‘Application Prediction Algorithm’ and select the 

option for Input Table. Next click and drag from the ‘Input Working Folder’ and select 

the option for ‘Working Folder’. Finally connect the ‘output.csv’ variable to the rest of 

the model ‘XY Table to Point’ and select the option for ‘Input Table’. Once the 

connections are repaired, the final fix is to open the ‘Application Prediction Algorithm’ 

and change the output table name and location (Figure 17). The output table MUST be a 

csv file format. The default name can be left but add .csv at the end and select the project 

folder location (NOT a geodatabase). Once this is done the model should look like Figure 

18. Save the model before closing the Model Builder edit window and re-run the model. 

 

 
Figure 48 – Screenshot showing how to open the editing window for Model Builder. 
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Figure 49 – Screenshot showing what the tool looks like in Model Builder if the 
connection to the algorithm tool is lost. 
 

 
Figure 50 – Screenshot showing how the tool looks once the lost connection is deleted, 
done by highlighting the ‘Application Prediction Algorithm’ and hitting delete. 
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Figure 51 – Screenshot displaying dragging the ‘Application of Prediction Algorithm’ 
from the toolbox viewed in the Catalog window in to the open editing Model Builder 
screen. 
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Figure 52 – Screenshots displaying how to repair the connections of the model to the 
‘Application Prediction Algorithm’. Click and drag from the ‘editing_table.csv’ to the 
‘Application Prediction Algorithm’ and select the option for Input Table. Next click and 
drag from the ‘Input Working Folder’ and select the option for ‘Working Folder’. Finally 
connect the ‘output.csv’ variable to the rest of the model ‘XY Table to Point’ and select 
the option for ‘Input Table’.  
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Figure 53 – Screenshot showing final repairs to the model. Once the tool is reconnected, 
double click to open ‘Application Prediction Algorithm’ to edit the output table name and 
location. The output table MUST be a csv file format. The default name can be left but 
add .csv at the end and select the project folder location (NOT a geodatabase). 
 

 
Figure 54 – Screenshot of the final repaired model for the prediction tool. Make sure to 
save the model before closing and re-running. 
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