
2013 STREAM HEALTH REPORT

AN EVALUATION OF WATER QUALITY, BIOLOGY, AND ACID MINE DRAINAGE RECLAMATION IN FIVE WATERSHEDS: RACCOON CREEK, MONDAY CREEK, SUNDAY CREEK, HUFF RUN, AND LEADING CREEK.

CREATED BY: VOINOVICH SCHOOL OF LEADERSHIP AND PUBLIC AFFAIRS AT OHIO UNIVERSITY JENNIFER BOWMAN AND KELLY JOHNSON 9-10-2014

Generated by Non-Point Source Monitoring System www.watersheddata.com

Table of Contents

Acknowledgements 3 Abstract 4
Introduction
Reports
Stream Health Report
Stream Health Report contains an evaluation of five watersheds: Raccoon Creek, Monday Creek, Sunday Creek, Huff Run, and Leading Creek.
Watershed reports
Watershed Reports contains five NPS reports, one for each watershed, detailing the chemical and biological data trends from baseline condition to 2013.
1. Raccoon Creek Watershed102. Monday Creek Watershed353. Sunday Creek Watershed504. Huff Run Watershed675. Leading Creek Watershed81
References

Specific AMD project entry forms used for 2013 NPS report can be found at (watersheddata.com)

Section IV on the website shows the completed NPS data entry form for each individual AMD project in pdf format. These reports include all information gathered about the site description, contact, monitoring plan, design and reclamation information, average water quality data (pH, net acidity, and discharge) at long-term monitoring stations, complete list of pre and post reclamation water quality and biology data, and if applicable; photos, water quality and biology reports, and site map. These reports are available to download as pdf reports from the NPS monitoring website www.watersheddata.com under the 'Reports Tab'.

Acknowledgements

The Stream Health Report is a collective effort by many people. This project would not have come together without the dedication and support of our watershed partnership. I would like to thank and acknowledge the following people for their input and contributions towards this project:

Ohio Department of Natural Resources – Division of Mineral Resources Management (ODNR-DMRM) - Ben McCament, Kaabe Shaw, Bill Jonard, Tammy Richards, Chad Kinney, Jeff Calhoun and Mary Ann Borch for funding, data collection, guidance, and being a supporter and partner in this project.

Watershed Groups – Raccoon Creek: Amy Mackey and Sarah Landers Monday Creek: Nate Schlater and Tim Ferrell Sunday Creek: Michelle Shively Huff Run: Marissa Lautzenheiser Leading Creek: Jim Freeman I would like to thank the watershed groups for their cooperation and patience in this project for doing everything from data collection, participation in trainings, gathering historical data, data validation and verification, and data entry on top of their

collection, participation in trainings, gathering historical data, data validation and verification, and data entry on top of their busy work schedules.

Rural Action's AmeriCorps Watershed Crew – 2013 field crews for MAIS data collection and chemical water sampling

ODNR-DMRM summer interns - 2013 field crews for data collection and data entry

Ohio University Biological Sciences - Kelly Johnson – conducting the MAIS training, macroinvertebrate laboratory identification, data analysis, macroinvertebrate data collection, method development, and guidance.

Voinovich School – Steve Porter and Matt Trainer (GIS and data analysis), Taeil Kim (program designer), Lindsey Siegrist (communications), Kyoung Lim (assistant programmer), and Natalie Kruse (research).

Ohio University students - Bruce Underwood, Nora Sullivan, Caleb Hawkins, Sarah Hayley Shaw and Kalen Robeson

Abstract

The Voinovich School of Leadership and Public Affairs at Ohio University created an evaluation system to track changes in chemical and biological data for the following watersheds: Monday Creek, Sunday Creek, Raccoon Creek, Huff Run and Leading Creek. The annual monitoring and reporting system was developed for the Ohio Department of Natural Resources Division of Mineral Resources Management (ODNR-DMRM) in 2005 to track progress towards the targets of the state's 2005 Non Point Source (NPS) management plan for acid mine drainage (AMD) on an annual basis. The state's Nonpoint Source Management plan is no longer active. However, the ODNR-DMRM is committed to tracking chemical and biological changes in the watersheds where active AMD abatement and treatment reclamation is planned and implemented.

The NPS annual reporting website (www.watersheddata. com) integrates water quality and biology data from watershed groups with project status details including: maps, graphs, charts, photos, and printable reports to address the progress with respect to AMD treatment and reclamation. Water-quality and biological trends are compared through time at long-term monitoring stations and acid load reductions are measured at AMD reclamation project discharges. Incremental changes in pH, net alkalinity, iron, and aluminum are reported along stream reaches within key restoration areas, identified by river mile and sample site IDs.

Total number of stream miles impaired by acid mine drainage were evaluated during 1997-2001 and are considered the baseline conditions, 341 stream miles were impacted at that time. Each year the number of stream miles surveyed that suggest they are meeting Warmwater Habitat (WWH), based on their fish and macroinvertebrate index scores, are recorded. As of 2010, 47 stream miles of the 175 miles assessed suggest they meet full attainment of the WWH Status. In addition to tracking the number of stream miles meeting their fish and macroinvertebrate target levels, incremental water-quality changes are also tracked, pH values show 199.8 miles of the 210.5 miles monitored met the pH 6.5 water quality standard in 2013.

Net alkalinity, iron, aluminum, pH, and macroinvertebrates were evaluated annually from 2006-2013. Incremental changes from year to year can be tracked using these indicators. Net alkalinity and pH values have improved from 2006 to 2013. The family-level biological indicator, Macroinvertebrate Aggregated Index for Streams (MAIS), was measured annually from 2006 to 2013, there have been slight fluctuations seen within each watershed. Macroinvertebrate data across all watersheds in 2013 indicated good results, most notable are the improvements seen in the West Branch of Sunday Creek. There has been a steady improvement in the biological community that correlates to the improvements in water quality due to reclamation projects constructed in the headwaters of the West Branch of Sunday Creek.

Introduction

The Nonpoint Source (NPS) Monitoring Project was created by the Voinovich School of Leadership and Public Affairs at Ohio University in 2005 and funded by the Ohio Department of Natural Resources Division of Mineral Resources Management (ODNR-DMRM). This project was developed to address the targets set forth for Abandoned Mine Drainage in the State of Ohio's Non Point Source (NPS) Management Plan 2005-2010 (www.epa. state.oh.us/dsw/nps/NPSMP/ET/amdjumppage.html). Abandoned Mine Drainage is one of the six NPS pollutants listed as a key issue to address in Ohio to improve water guality. This plan is no longer active, however the ODNR-DMRM, watershed partners, and university researchers continue to monitor the effects of acid mine drainage and reclamation in the region. This report reflects the works of this partnership at the federal, state, and local level working together to improve water quality in the Appalachian coal region of Ohio.

As a result of the NPS Monitoring Project, an on-line reporting system, www.watersheddata.com, has been created to track environmental changes in five watersheds: Raccoon Creek, Monday Creek, Sunday Creek, Huff Run and Leading Creek. These five watersheds represent where active AMD reclamation are being constructed. Chemical water quality and biological data trends have been evaluated at the project level, watershed level, and collectively to monitor the changes in water quality as a result of AMD reclamation. The website provides a repository of information related to acid mine drainage reclamation and water quality including reports of: AMD reclamation projects and watersheds' water quality trends. All water quality data can be viewed, entered, edited, mapped and downloaded for each watershed.

Reports

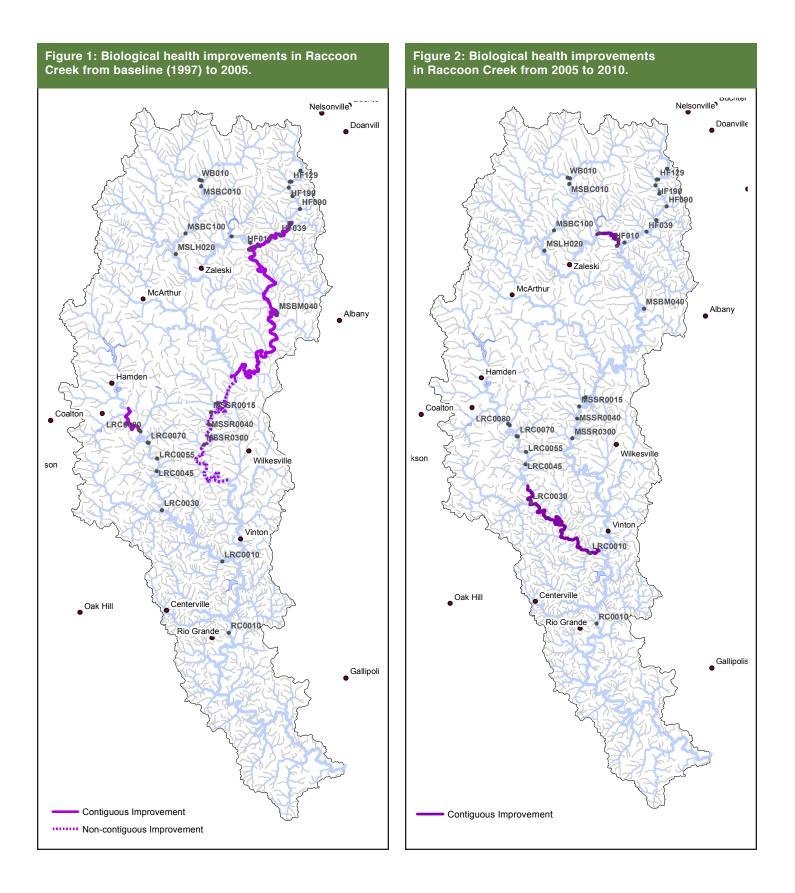
All AMD project descriptions are compiled in a separate document containing pertinent static information describing the AMD project, titled "Collection of Acid Mine Drainage (AMD) Reclamation Projects in the Coal-Bearing Region of Ohio". This will eliminate redundancy in printing static project specific information each year. This report is available online at watershedata.com as well as with all partner organizations.

The "AMD project collection" report includes: a chronological collection of all projects completed since late 1990s. The 'AMD project collection' report displays

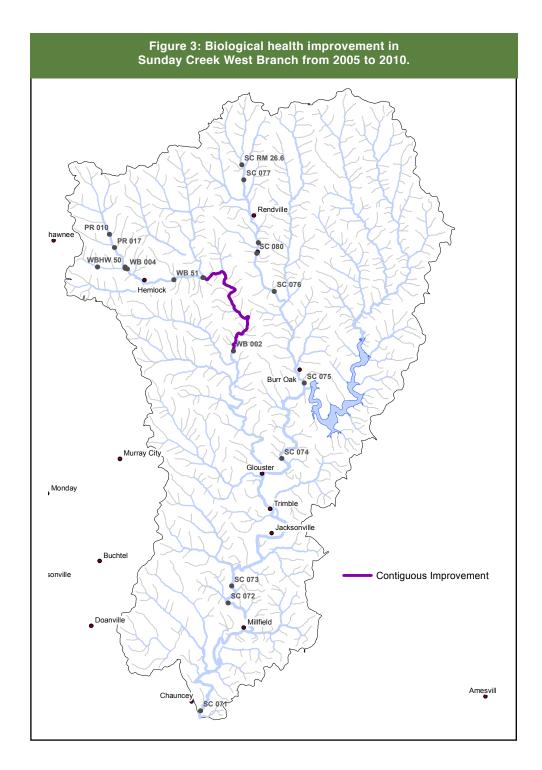
general information about the AMD issues prior to reclamation and the AMD project description. Specifically the 'AMD project collection' report includes: pre and post construction photos, description of AMD problem, design and construction information, costs, contractors, dates of construction, identification of project discharge, map of site (optional), and pre-water quality data at project discharge. 'AMD project collection' report is a compilation of all projects completed since the late 1990s including all past archived reports. This report is a stand-alone document. Each year, the newly completed project reports are simply added to the collection.

The "Annual Stream Health" report contains the yearly chemical and biological data that change each year. This report includes the chemical and biological water quality data analysis for all target stream reaches within the five key watersheds. Stream reaches are identified as: Raccoon Creek Mainstem, Hewett Fork, Little Raccoon Creek, Monday Creek Mainstem, Sunday Creek Mainstem, West Branch of Sunday Creek, Huff Run, and Thomas Fork (Leading Creek). Data from these stream reaches are analyzed each year for changes and trends in pH, net alkalinity, iron, aluminum, and macroinvertebrates. Yearly trends of acid loading and metal loading reduction from each AMD project discharge are also displayed in this report. Long-term monitoring data, family-level macroinvertebrate data, and pre/post project discharge data collected by watershed groups and DMRM staff are utilized to generate the graphs of water quality trends along the stream reaches.

Generated by Non-Point Source Monitoring System www.watersheddata.com


To track the overall health of Raccoon Creek, Monday Creek, Sunday Creek, Leading Creek and Huff Run, the watersheds where acid mine drainage reclamation is active, chemical data were collected annually since 2005 (2009 in Leading Creek). Biological data are collected annually for family-level macroinvertebrates (MAIS) and every 3-5 years for fish (IBI, Index of Biotic Integrity). Baseline conditions were established during the time period of 1997-2001 with historic data. 2010 fish and macroinvertebrate data suggest a total of 47 miles of stream meet the use attainment criteria for WWH, with 51 stream miles evaluated. Over 158 miles were evaluated for MAIS and 54 miles for IBI. This data was collected to compare these indices to the biological health targets of 12 for MAIS and IBI scores of 44/40 for wadable/boatable streams. Stream miles that improved in biological health from baseline to 2005 are shown in Figure 1. Figures 2 and 3 show 18.4 miles were improved in the Raccoon Creek watershed and 5.3 miles improved in West Branch of Sunday Creek from 2005 to 2010. Year 2015 will mark the next full biological evaluation across watershed sites.

Other significant incremental water changes are also tracked and described in this report; for example, acid and metal loading reductions, pH and net alkalinity improvements. These incremental changes track progress toward the overarching goal of meeting targets. Incremental changes are tracked in the acid mine drainage project level reports and in the watershed level reports.



²⁰¹³ Stream Health Report

Generated by Non-Point Source Monitoring System www.watersheddata.com

Generated by Non-Point Source Monitoring System www.watersheddata.com

Generated by Non-Point Source Monitoring System www.watersheddata.com

Table 1. Summary of results for each of the five watersheds evaluated in 2005 to 2013:Raccoon Creek, Monday Creek, Sunday Creek, Huff Run, and Leading Creek.

Watershed	Total number of completed projects	Total costs	Total acid load reduction lbs/day	Total stream miles improved in 2005/2010 to meet IBI & MAIS Biological stream health targets	Stream miles that met the pH target	Total stream miles monitored
Raccoon Creek	17	\$11,986,204	5,629	23.3/18.42 (41.7)	117	117
Monday Creek	(plus 5 subsidence 16 projects, costs are not included)	\$6,569,422	4,178	0/0	24	32
Sunday Creek	11 (7 of 10 are sub- sidence projects)	\$2,455,445	369	0/5.26 (5.26)	42.8	43
Huff Run	13	\$5,016,487	1,075	0/0	10	10
Leading Creek	1	\$415,437	661	NA/0	6	8.5
Total	58	\$26,442,995	11,912	23.3/23.7 (47.0)	199.8	210.5

Reductions

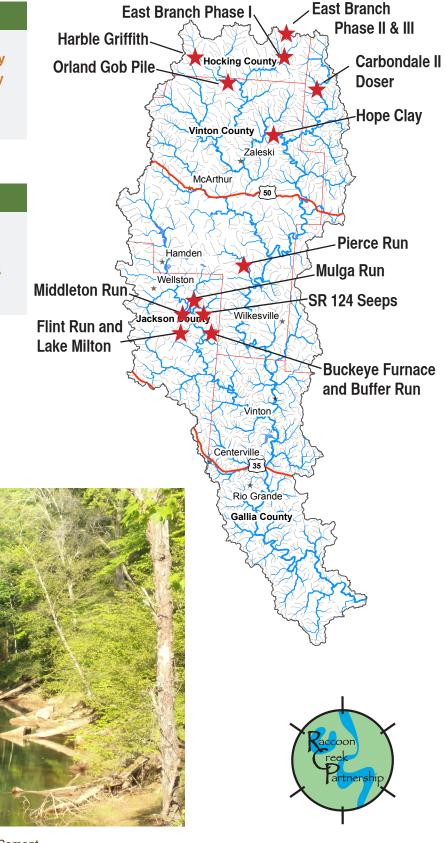
2013 total acid load reductions = 11,912 lbs/day

Costs

2013 total reclamation costs = \$26,442,995

RACCOON CREEK WATERSHED REPORT

Generated by Non-Point Source Monitoring System www.watersheddata.com


Total acid load reduction = 5,629 lbs/day Total metal load reduction = 888 lbs/day

> Data derived using the Stoertz Water Quality Evaluation Method (Kruse et al., 2014)

Design = \$1,819,615 Construction = \$10,166,589

Total Costs through 2013 = \$11,986,204

Raccoon Creek near Moonville, Photo by Ben McCament 2013 Stream Health Report

Generated by Non-Point Source Monitoring System www.watersheddata.com

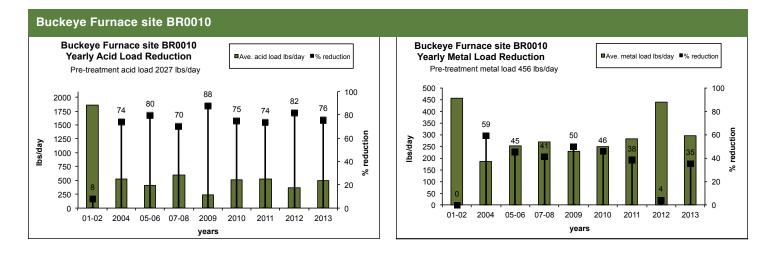
Timeline of the Raccoon Creek Watershed Project Milestones and AMD Projects

1980s	 Formation of Raccoon Creek Improvement Commitee (RCIC): Grassroots citizen group to address water quality issues in Raccoon Creek
Early 1990s	RCIC invites citizens from all six counties to join efforts
Late 1990s	 Formation of Raccoon Creek Watershed Partnership, a loosely based partnership of agencies to address technical AMD issues
1999	State Route 124 Strip Pit and Buckeye Furnace Project completed
2000	Little Raccoon Creek AMDAT completed Watershed Coordinator position funded for six years
2001	Headwaters AMDAT completed State Route 124 seeps project completed
2002	
2003	 Mulga Run project completed Middle Basin AMDAT completed Completed management plan for Raccoon Creek Watershed
2004	Carbondale II project completed
2005	Middleton Run-Salem Road project completed
2006	 Raccoon Creek Water Trail Association formed Mission to Establish a water trail on Raccoon Creek Flint Run and Lake Milton Projects completed, Watershed Coordinator three year extension funded
2007	Raccoon Creek Partnership formed 501 (c) 3 Waterloo Aquatic Education Center opened
2008	East Branch Phase I AMD Project
2009	Pierce Run AMD Project began East Branch Phase II Project began
2010	East Branch Phase II completed
2011	East Branch Phase III completed
2012	 Water Trail map created by Ohio University Environmental Studies student, Karla Sanders Orland Gob Pile and Harble Griffith Reclamation Projects completed Pierce Run AMD treatment project completed
2013	 Raccoon Creek Water Trail maps were distributed, West Branch Harble Griffith 319 Grant was completed, and 2 new families of mayflies documented in the watershed

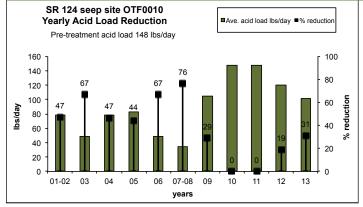
Generated by Non-Point Source Monitoring System www.watersheddata.com

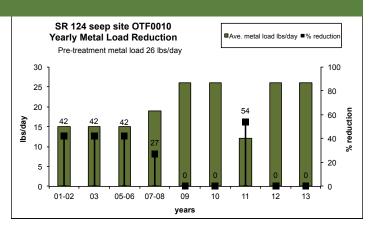
Raccoon Creek Projects

Acid mine drainage reclamation projects completed in the Raccoon Creek Watershed:

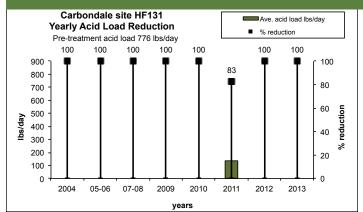

1999	Buckeye Furnace/Buffer Run
2001	State Route 124 Seeps
2004	Carbondale II Doser
	Mulga Run
2005	Hope Clay
	Salem Road/Middleton Run
2006	Flint Run East
	Lake Milton
2007	East Branch Phase I
2010-2011	East Branch Phase II & III
2012	East Branch Phase I Maintenance
	Jackson Area AMD Maintenance-Flint Run and Lake Milton
2013	Orland Gob Pile
	Harble Griffith
	Pierce Run

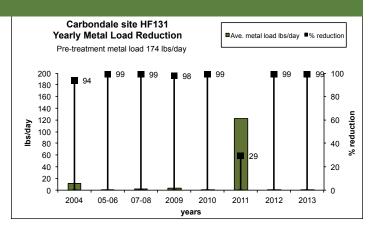

Italicized projects indicates not actively monitored


Generated by Non-Point Source Monitoring System www.watersheddata.com

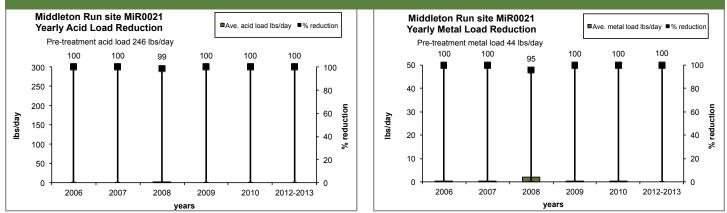

Yearly acid and metal load reduction trends per project

Similar to other environmental best management practices (BMPs), performance of passive acid mine drainage reclamation projects are also expected to decline with time. Active treatment systems are not expected to decline with time but sometimes need to be maintained to perform adequately. Currently, operation and maintenance plans are being designed for each existing system and are planned for future projects. The graphs below show the mean annual acid and metal load reduction using the Stoertz Water Quality Evaluation Method (Kruse et al., 2014) for each year (or group of years) during post-reclamation from the project effluent. From these graphs the rate of decline (and/or improvement) with time of the treatment system is implied. Knowing the rate of decline will aid in the implementation of operation and maintenance plans.

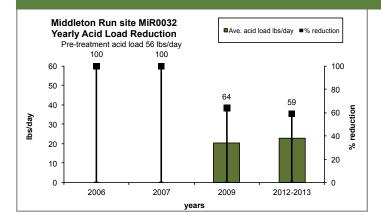


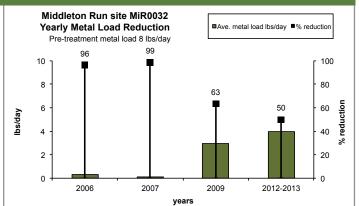


Carbondale site HF131

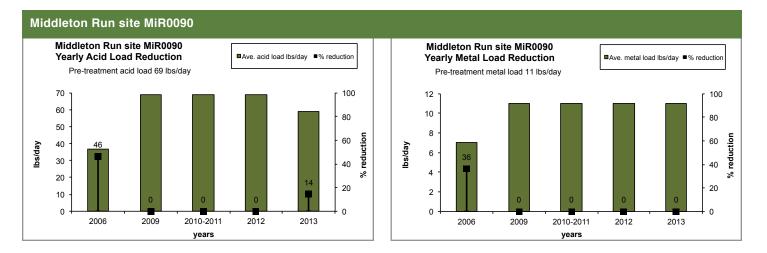


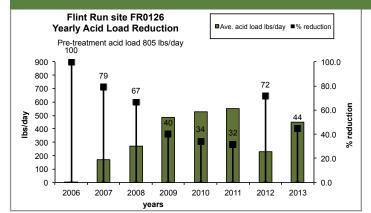
Generated by Non-Point Source Monitoring System www.watersheddata.com

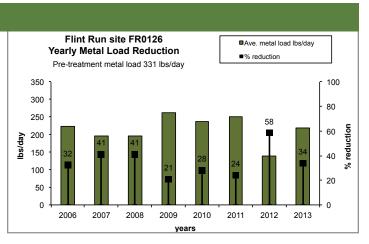

Yearly acid and metal load reduction trends per project



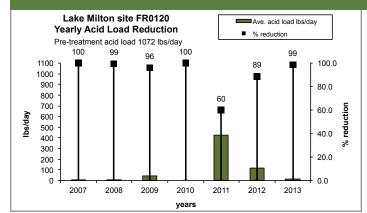
Middleton Run site MiR0021

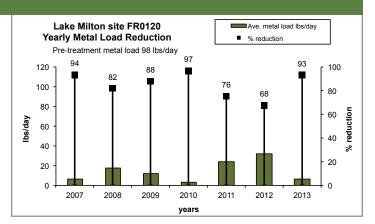

Middleton Run site MiR0032



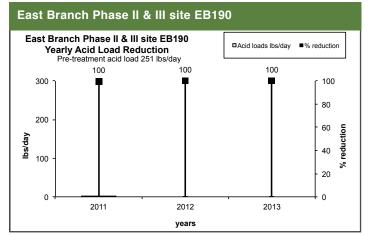

Generated by Non-Point Source Monitoring System www.watersheddata.com

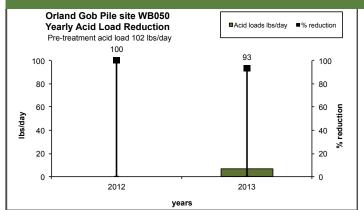
Yearly acid and metal load reduction trends per project

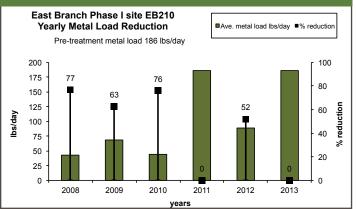


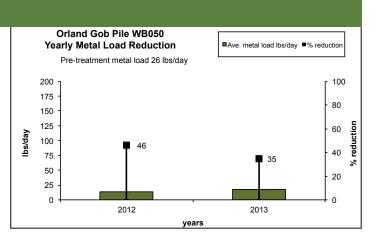

Flint Run site FR0126

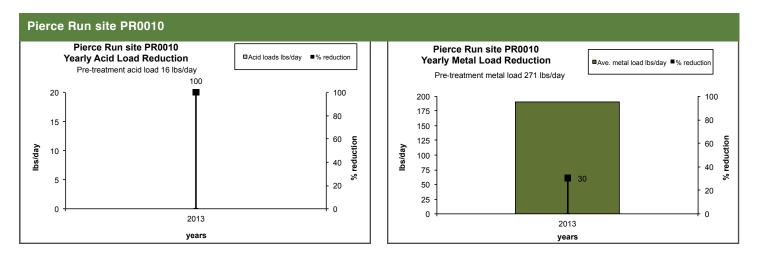

Lake Milton site FR0120

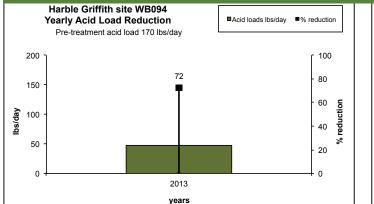


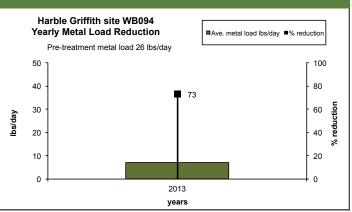

Generated by Non-Point Source Monitoring System www.watersheddata.com


Yearly acid and metal load reduction trends per project

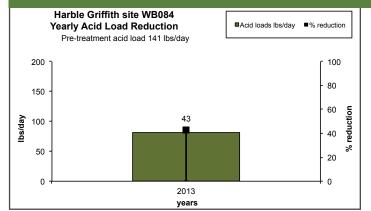


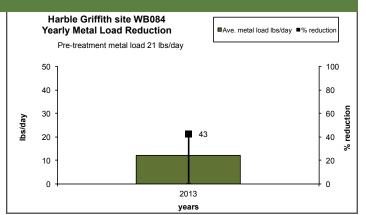


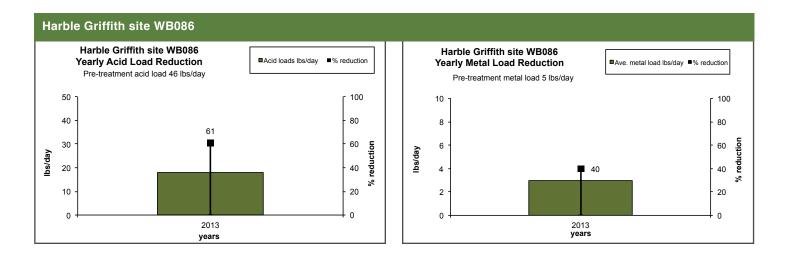


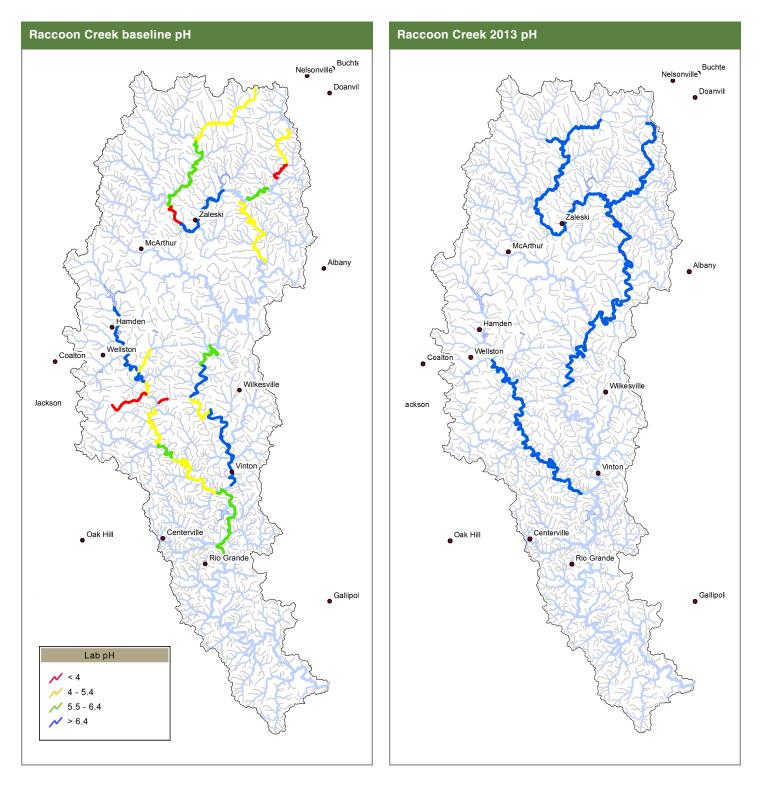

Generated by Non-Point Source Monitoring System www.watersheddata.com

Yearly acid and metal load reduction trends per project




Harble Griffith site WB094

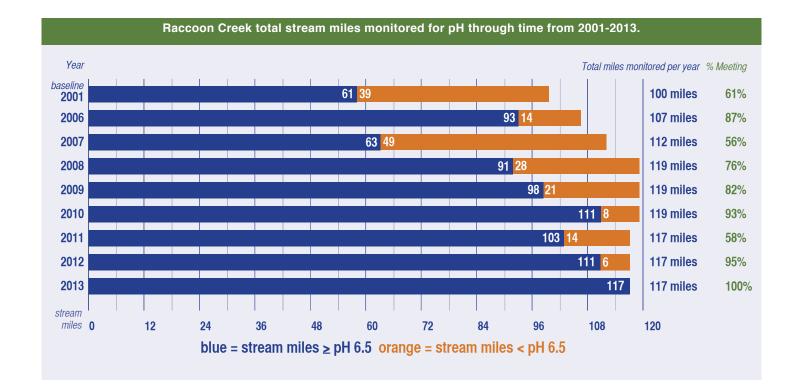

Harble Griffith site WB084


Generated by Non-Point Source Monitoring System www.watersheddata.com

Yearly acid and metal load reduction trends per project

Generated by Non-Point Source Monitoring System www.watersheddata.com

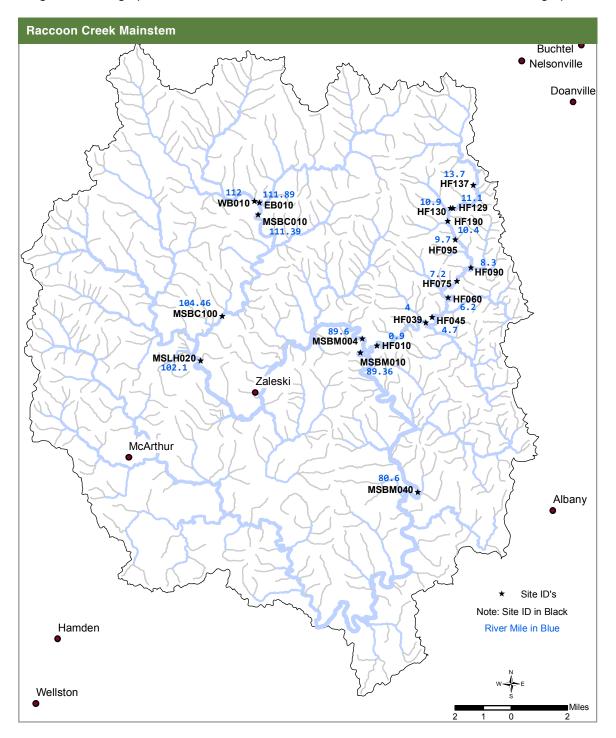
Chemical Water Quality


In Raccoon Creek pH values have improved throughout the watershed from baseline conditions (1994-2001) to 2013. Raccoon Creek mainstem, Hewett Fork and Little Raccoon Creek average pH values have increased from a range of 4.0-5.4 during baseline to all meeting the pH target of 6.5 in 2013. Of the miles of stream monitored in 2013, 14.8 river miles in Hewett Fork, 1.6 miles in West Branch, 6 miles in East Branch, all 27 river miles in Little Raccoon Creek (LRC), and all 68 miles along the mainstem of Raccoon Creek met the pH standard (pH >6.5).

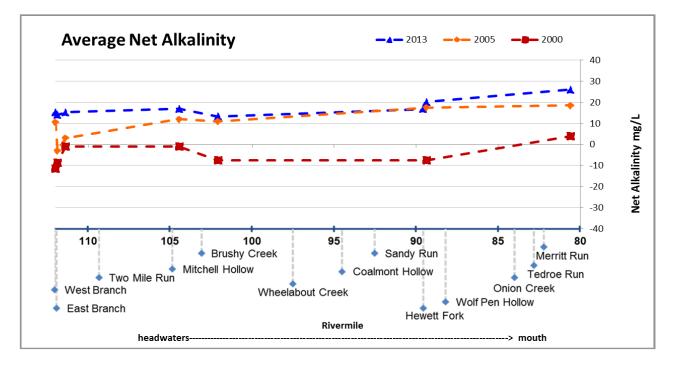
2013 Stream Health Report

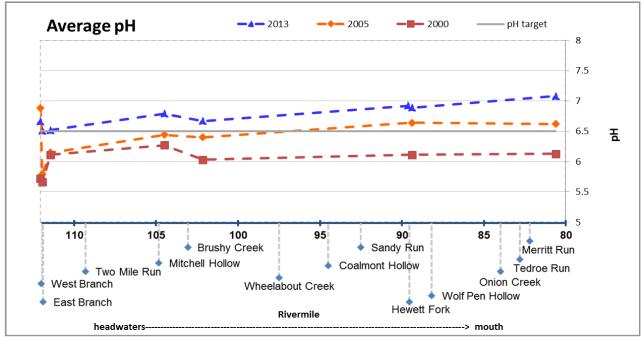
Generated by Non-Point Source Monitoring System www.watersheddata.com

Chemical Water Quality

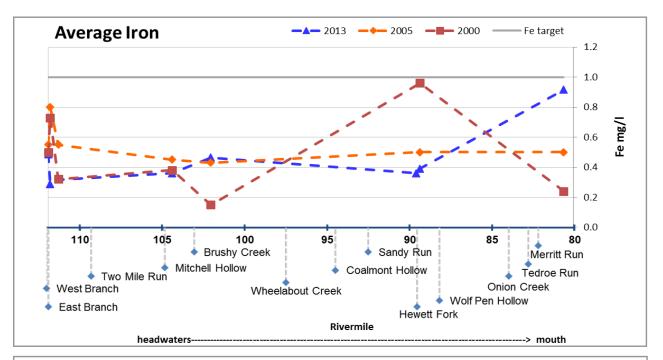

There are approximately 117 stream miles monitored each year along the mainstem of Raccoon Creek (downstream to Rio Grande), Little Raccoon Creek, Hewett Fork, and East and West Branch. Each year the number of miles that meet this target fluctuates. Currently in 2013, all of 117 miles of stream miles monitored met the pH target.

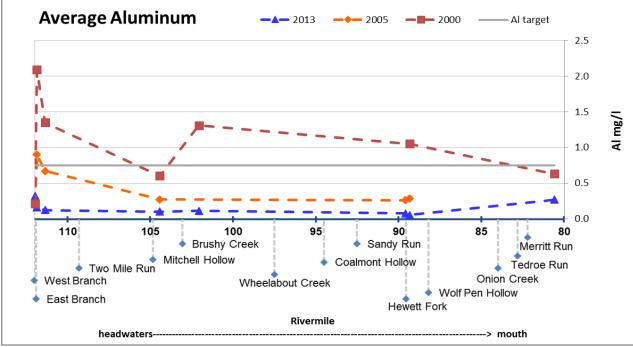
Generated by Non-Point Source Monitoring System www.watersheddata.com

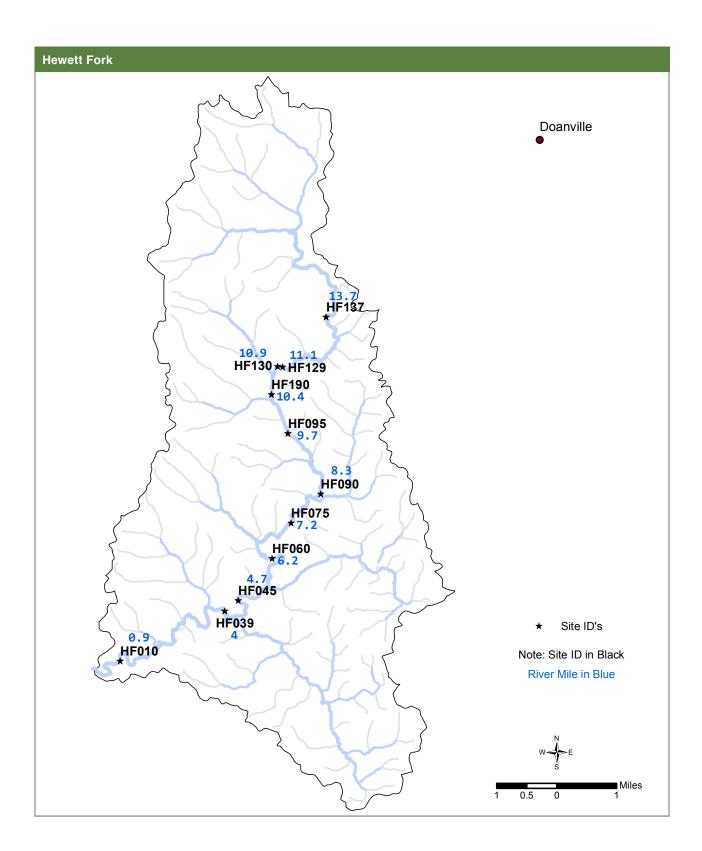

Chemical water quality analysis per stream reach


For purposes of analyzing chemical water quality changes along the mainstem of receiving stream where AMD reclamation projects have been completed, Raccoon Creek has been divided into the following stream segments: Raccoon Creek Mainstem, Little Raccoon Creek, and Hewett Fork. Within these stream reaches, chemical long-term monitoring data is utilized to generate line graphs along the stream gradient from headwaters to the mouth. Along the x-axis named tributaries are shown to illustrate new sources of water entering the mainstem. A list of long-term monitoring sites utilized to generate the graphs with their river miles are shown before each set of stream reach graphs.

Generated by Non-Point Source Monitoring System www.watersheddata.com

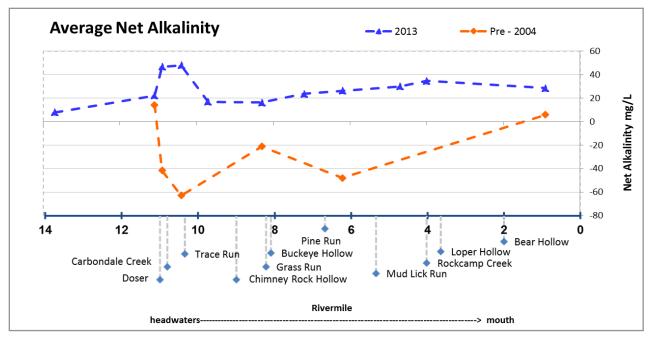

Raccoon Creek Mainstem												
Site ID	WB010	EB010	MSBC010	MSBC100	MSLH020	MSBM004	MSBM010	MSBM040				
Rivermile	112	111.89	111.39	104.46	102.1	89.6	89.36	80.6				

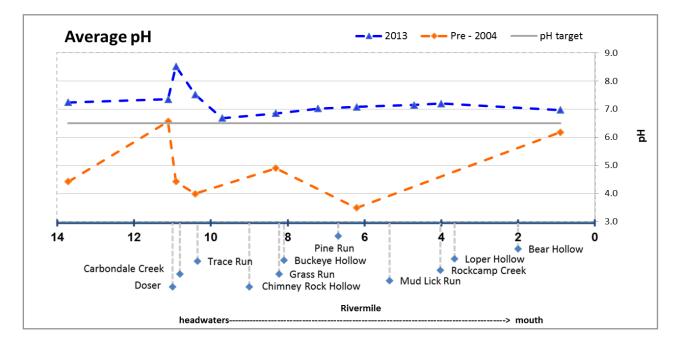



Generated by Non-Point Source Monitoring System www.watersheddata.com

Raccoon Creek Mainstem												
Site ID	ID WB010 EB010 MSBC010 MSBC100 MSLH020 MSBM004 MSBM010 MSBM0											
Rivermile	112	111.89	111.39	104.46	102.1	89.6	89.36	80.6				

Generated by Non-Point Source Monitoring System www.watersheddata.com

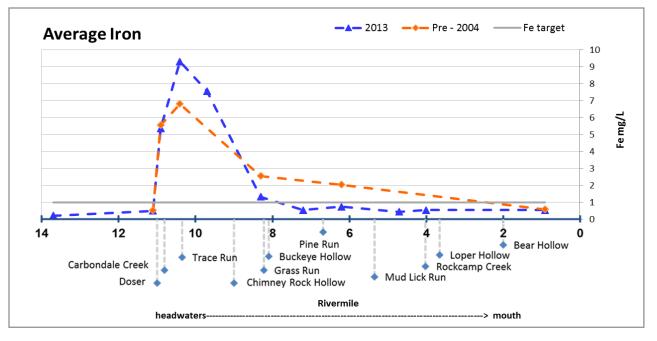


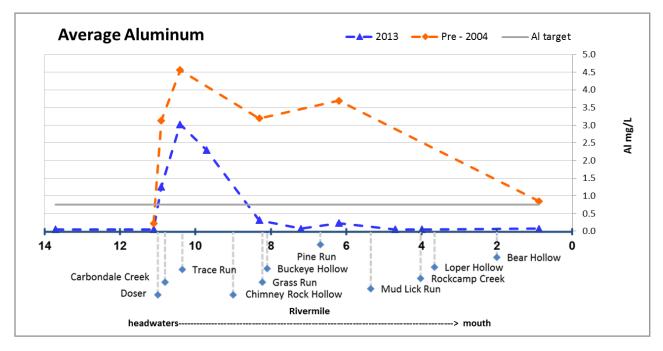

Generated by Non-Point Source Monitoring System www.watersheddata.com

Chemical water quality analysis per stream reach

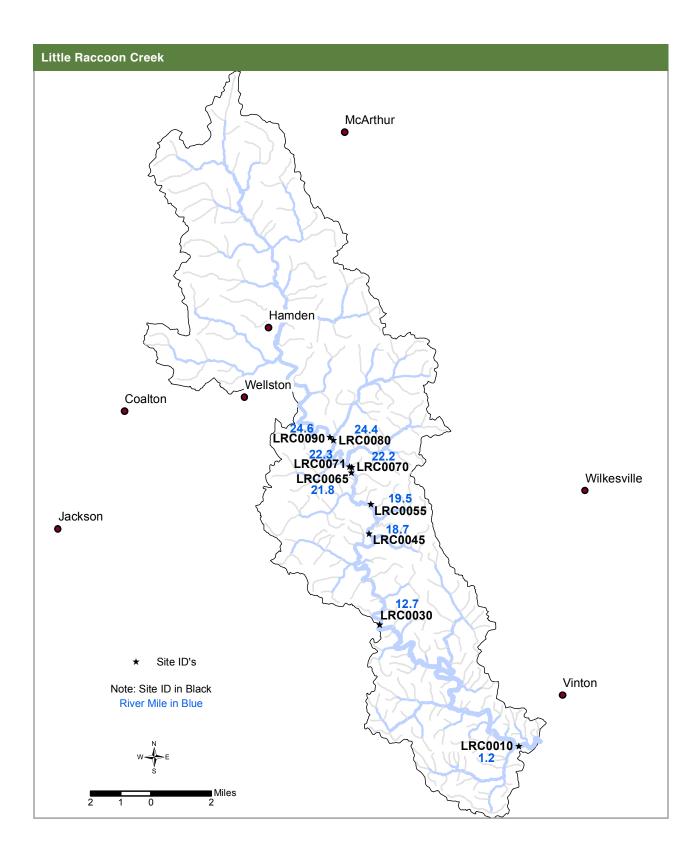
Hewett Fork												
Site ID	HF137	HF129	HF130	HF190	HF095	HF090	HF075	HF060	HF045	HF039	HF010	
Rivermile	13.7	11.1	10.9	10.4	9.7	8.3	7.2	6.2	4.7	4	0.9	

Note: Lime Doser installed in 2004 at RM 11

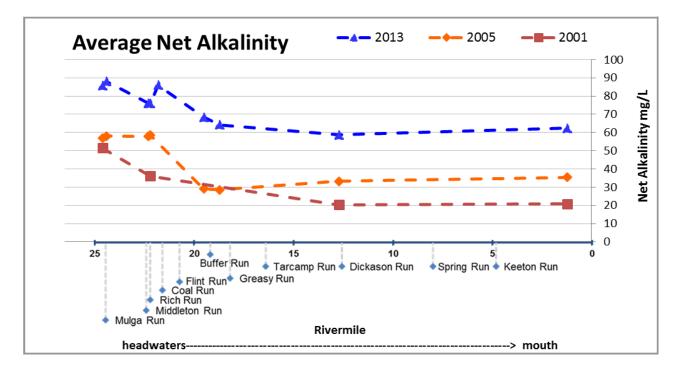


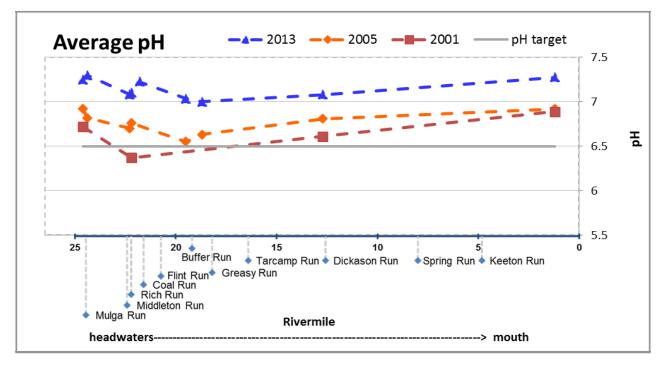

Generated by Non-Point Source Monitoring System www.watersheddata.com

Chemical water quality analysis per stream reach

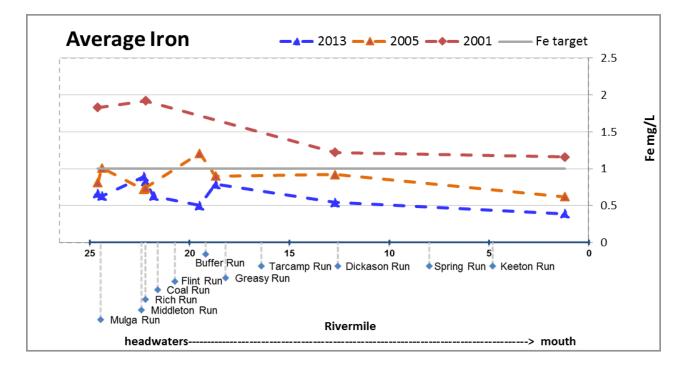

Hewett Fork												
Site ID	HF137	HF129	HF130	HF190	HF095	HF090	HF075	HF060	HF045	HF039	HF010	
Rivermile	13.7	11.1	10.9	10.4	9.7	8.3	7.2	6.2	4.7	4	0.9	

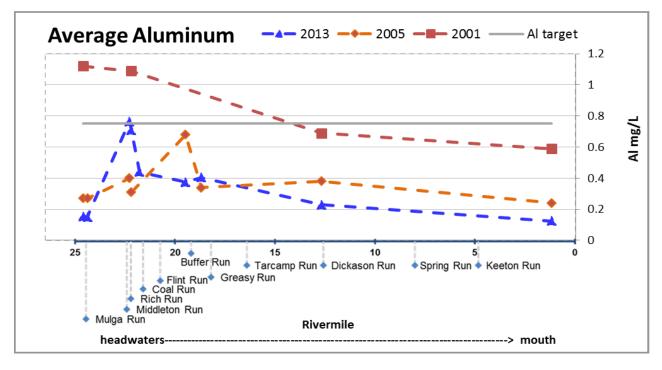
Note: Lime Doser installed in 2004 at RM 11



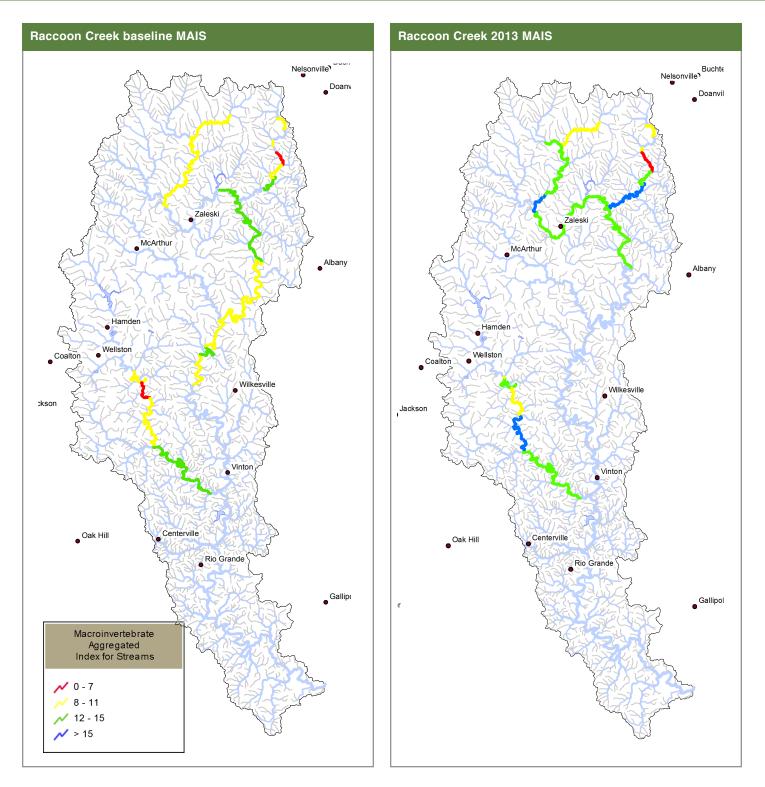

Generated by Non-Point Source Monitoring System www.watersheddata.com

Generated by Non-Point Source Monitoring System www.watersheddata.com


Little Raccoon Creek												
Site ID	LRC0090	LRC0080	LRC0071	LRC0070	LRC0065	LRC0055	LRC0045	LRC0030	LRC0010			
Rivermile	24.6	24.4	22.3	22.2	21.8	19.5	18.7	12.7	1.2			

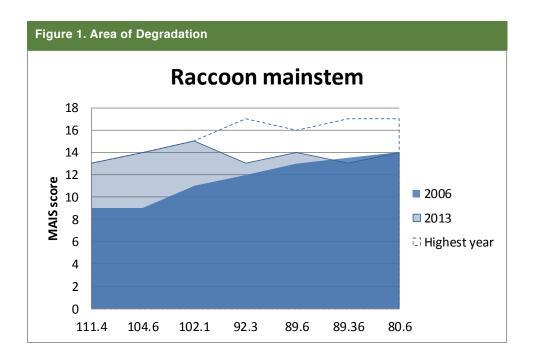


Generated by Non-Point Source Monitoring System www.watersheddata.com


Little Raccoon Creek												
Site ID	LRC0090	LRC0080	LRC0071	LRC0070	LRC0065	LRC0055	LRC0045	LRC0030	LRC0010			
Rivermile	24.6	24.4	22.3	22.2	21.8	19.5	18.7	12.7	1.2			

Generated by Non-Point Source Monitoring System www.watersheddata.com

Biological Water Quality


MAIS samples were collected throughout Raccoon Creek in 2013 (excluding Middle Basin sites). These stations have been established as annual monitoring stations for macroinvertebrates. The sites are used to track incremental changes each year.

Generated by Non-Point Source Monitoring System www.watersheddata.com

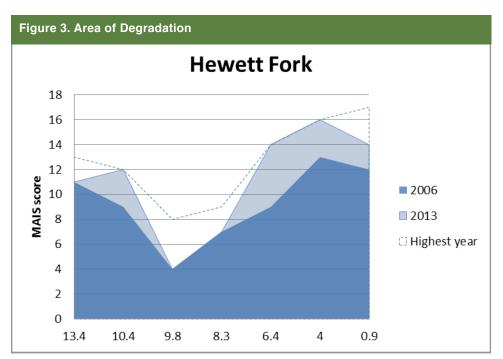
Biological Water Quality

Raccoon Creek - Mainstem

All seven of the long term monitoring sites along the thirty or more miles of the Raccoon Creek Mainstem scored a "12" or higher on the macroinvertebrate (MAIS) index, for the second year in a row (Figure 1). Sites in the upper sections scored as well as they ever have (met highest scores attained in past years) but in the lower section of the mainstem (below RM 102.1), MAIS scores fell below their highest potential, as they did in 2012. These sites had better biological quality in previous years, especially in 2009 and 2012 when several sites scored 16-17 (Very Good quality). However, the high scores have not recurred consistently every year. In 2012, only one site met statistical criteria for improvement (RM 111.4) over the 7 year monitoring period; this year a second site also met the criteria (the site immediately downstream, RM 104.6) (Figure 2).

The blue dashed line identifies the highest MAIS score achieved at that site throughout the monitoring time period.

Figure	2. Racc	oon Cre	ek - Mai	nstem - N	MAIS Re	gressio	ns						
RM	2005	2006	2007	2008	2009	2010	2011	2012	2013	Linear trends	R sq.	P-value	No. of years
111.4	8	9	12	9	10	12	13	12	13	improved	0.667	0.007	9
104.6		9	11	12	9	11	10	14	14	improved	0.458	0.066	8
102.1		11	11	10	13	10	11	12	15	no change	0.326	0.139	8
92.3		*	*	10	10	17	11	14	13	no change	0.168	0.420	6
89.6		13	14	11	16	12	16	15	14	no change	0.138	0.366	8
89.4		*	12	16	14	17	13	13	13	no change	0.029	0.717	7
80.6		14	14	17	16	12	14	15	14	no change	0.024	0.715	8


*scores illustrated in the figure were estimated as the mean of sites immediately upstream and downstream that year

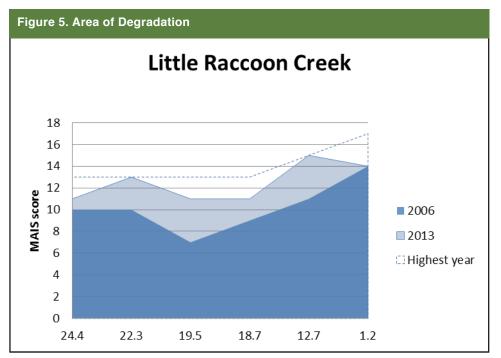
Generated by Non-Point Source Monitoring System www.watersheddata.com

Biological Water Quality

Raccoon Creek - Hewett Fork

In 2013, the biological quality of the eleven mile reach below the Carbondale doser showed continued improvement, with the exception of a well-defined 2.5 mile 'mixing zone' downstream of the doser, which remains impaired even as other sections of the stream recover. One site immediately downstream of the doser produced a new high score of "12" compared to its usual "5-9", which was somewhat surprising given that it lies within the mixing zone and is not generally expected to show strong recovery (Figure 3). Several sites further downstream in the 'recovery zone' (RM 8.3-4.0) showed steady numerical improvement compared to last year, suggesting that biological recovery since installation of the doser in 2004 is still progressing. Two of these sites, RM 6.4 (upstream King Hollow Rd.) and RM 4.0 (Rockcamp), achieved new high scores this season of "14" and "16", compared to last year's scores of "11" and "14", which helped confirm that biological improvement of more than 8 river miles downstream the doser (RM 8.3 to 4.0) since 2006 has reached statistical significance (Figure 4).

The blue dashed line identifies the highest MAIS score achieved at that site throughout the monitoring time period.


Figure	4. Rac	coon C	Creek -	Hewet	t Fork	MAIS	Regres	sions								
RM	2001	2002	2003	2005	2006	2007	2008	2009	2010	2011	2012	2013	Linear trends	R sq.	P-value	No. of Yrs.
13.4					11	8	9	12	13	11	11	11	no change	0.164	0.319	8
10.4					9	3	7	6	6	5	8	12	no change	0.183	0.290	8
9.8					4	3	6	3	3	8	4	4	no change	0.032	0.667	8
8.3	2	3	3	5	7	3	5	6	3	6	9	7	improved	0.500	0.010	12
6.4					9	9	8	10	10	13	11	14	improved	0.714	0.008	8
4					13	13	14	13	13	14	14	16	improved	0.536	0.038	8
0.9					12	12	15	17	13	16	16	14	no change	0.250	0.206	8

Generated by Non-Point Source Monitoring System www.watersheddata.com

Biological Water Quality

Raccoon Creek - Little Raccoon Creek

Little Raccoon Creek biological quality in 2013 was similar to 2012, with most sites showing stable improvement since 2006, after completion of the six major reclamation projects upstream of RM 19.5 (Mulga Run, Salem Road/Middleton Run, State Rte. 124 seeps, Flint Run East, Lake Milton, and Buckeye Furnace) (Figure 5). The macroinvertebrate community at the long term site at RM 12.7 has shown the greatest and most consistent improvement, and is now consistently attaining a MAIS score of "14-15" from a low of "3" in 2005. This year it attained a new high score of "15". As in the past, sites from approximately RM 18 to 1.2 (more than 16 river miles) achieved target macroinvertebrate scores of '12', indicating that the macroinvertebrate community is probably at or near attainment of WWH status. Upstream sites have also improved since 2006, with RM 22.3 showing continued improvement. It surpassed the MAIS target of "12" this year, attaining a new highest score of 13 and a statistically significant improvement since monitoring began (Figure 6).

The blue dashed line identifies the highest MAIS score achieved at that site throughout the monitoring time period.

Figure 6. Little Raccoon Creek - MAIS Regressions													
RM	2005	2006	2007	2008	2009	2010	2011	2012	2013	Linear trends	R sq.	P-value	No. of years
24.4	8	10	11	11	9	9	13	11	11	no change	0.268	0.154	9
22.3	8	10	10	9	10	10	10	10	13	improved	0.525	0.027	9
19.5		7	*	9	11	12	13	10	11	no change	0.536	0.038	8
18.7	14	9	12	9	13	11	11	12	11	no change	0.007	0.832	9
12.7	3	11	13	13	14	14	14	14	15	improved	0.556	0.021	9
1.2	14	14	13	15	17	16	16	16	14	no change	0.201	0.226	9

*Indicates a score illustrated as the mean of sites immediately upstream and downstream that year

MONDAY CREEK WATERSHED REPORT

2013 NPS Report - Monday Creek Watershed

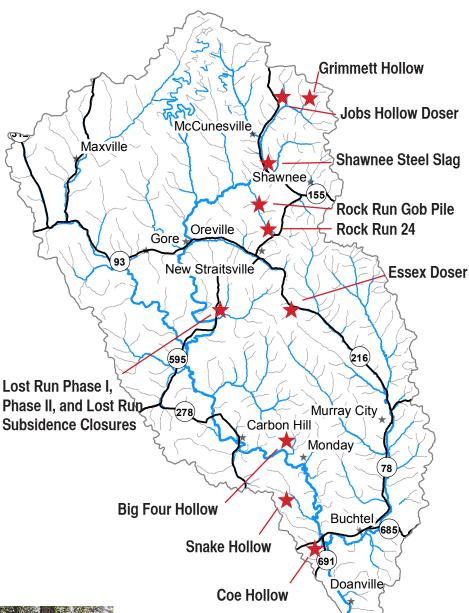
Generated by Non-Point Source Monitoring System www.watersheddata.com

Monday Creek Restoration Project

Reductions

Total acid load reduction 2013 = 4,178 lbs/day

Total metal load reduction 2013 = 526 lbs/day

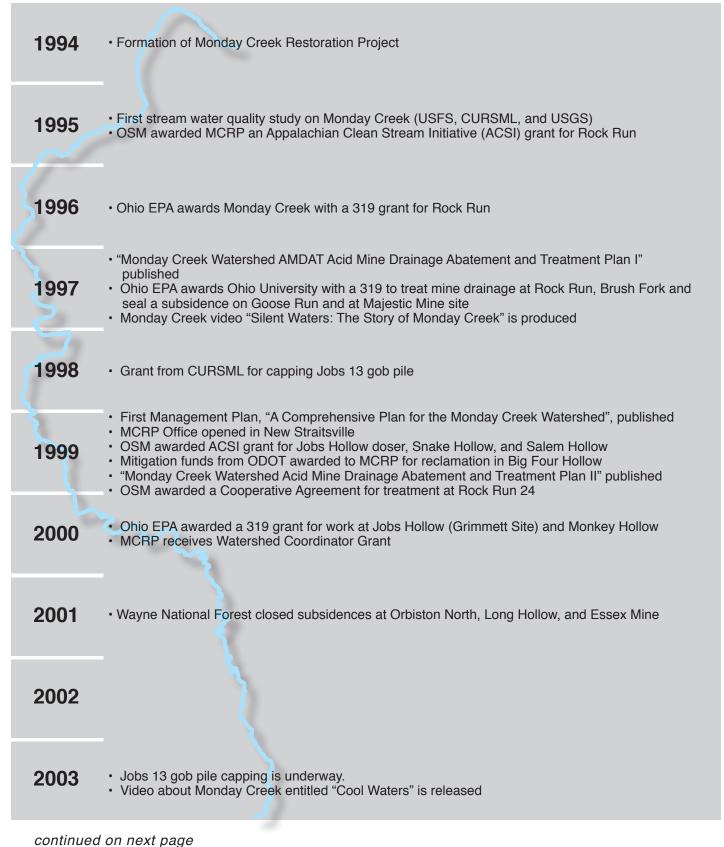

Data derived using the Stoertz Water Quality Evaluation Method (Kruse et al. 2014) (excludes Rock Run Gob Pile Project)

Cost

Design \$374,593 (excluding Jobs Doser & Lost Run maintenance and Snake Hollow)

Construction \$6,194,830

Total costs through 2013 = \$6,569,422



363,425,000 gallons of stream water per year eliminated from entering into the deep mines as the result of conducting seven stream capture closure projects in Monday creek.

2013 Stream Health Report

Generated by Non-Point Source Monitoring System www.watersheddata.com

Timeline of the Monday Creek Watershed Project Milestones & AMD Projects

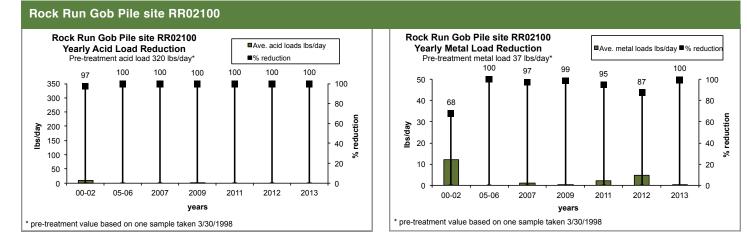
Generated by Non-Point Source Monitoring System www.watersheddata.com

	Timeline of the Monday Creek Watershed Project Milestones & AMD Projects (continued)
2004	 Volunteers planted nearly 7,000 Pine on Sunday Creek Coal Company land Jobs active alkaline doser installed U.S. Forest Service constructed a series of limestone leach beds and channels in Snake Hollow Ohio EPA awarded MCRP a 319 grant for work at Lost Run
2005	 U.S. Army Corps of Engineers Civil Works Review Board approves the Monday Creek Feasibility Study for a favorable Chief of Engineers' Report and inclusion in Water Resources Development Act of 2005 (WRDA '05)
2006	 Acid Mine Drainage Abatement and Treatment (AMDAT) Plan III approved Essex Doser (319 grant) is operational U.S. Forest Service constructed open limestone channels, closed subsidence and established positive drainage at New Straitsville North area, Monkey Hollow, and Elm Rock area The MCRP Watershed Management Plan was fully endorsed by the Ohio DNR and Ohio EPA Lost Run Phase I reclamation and OEPA 319 grant was completed
2007	 Ohio EPA awarded MCRP a 319 grant for construction of a steel slag leach bed at Shawnee U.S. Forest Service closed subsidences near State Route 216 and Snake Hollow The Water Resources Development Act of 2007 is approved, Congress authorized \$21 million for ecological restoration of Monday Creek
2008	 U.S. Forest Service completes reclamation in Valley Junk area ODOT mitigation funds in the amount of \$200,000 secured for work at Lost Run Phase 2
2009	 ODOT mitigation funds are in place for work in Big Four Hollow and at Rock Run U.S. Forest Service completed reclamation work along State Route 278, New Straitsville South area, Lost Run headwaters, Brush Fork, and Coe Hollow. Ohio DNR completes phase II of Shawnee steel slag leach bed
2010	• U.S. Forest Service closed subsidences along Snow Fork, Rock Run, and New Straitsville South
2011	 U.S. Forest Service closed subsidences in the Cawthorn area Ohio DNR conducted reclamation and needed maintenance at Rock Run U.S. Forest Service and ODNR completed reclamation in Sand Run Ohio DNR completes construction to minimize sediment transport at Big Four Hollow
2012	 3 limestone leach beds installed in Big Four Hollow. MCRP, Perry Co. Health Department, Village of New Straitsville and watershed residents installed a community garden in New Straitsville. Major AMD maintenance projects completed in Lost Run and Jobs Hollow
2013	 Five new fish species found in Monday Creek and the first annual Monday Creek Canoe Float with 54 people in 27 boats!

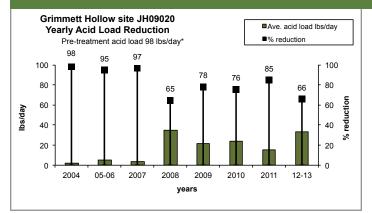
Generated by Non-Point Source Monitoring System www.watersheddata.com

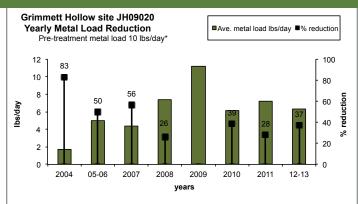
Monday Creek Projects

Acid mine drainage reclamation projects completed in Monday Creek Watershed:

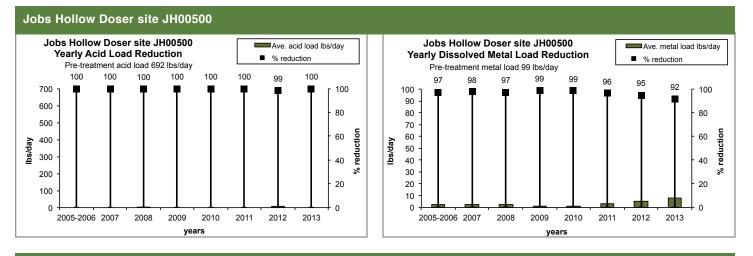

- **1999** Rock Run Gob Pile (revamped 2011)
- **2001** Rock Run 24
- 2003 Grimmett Hollow
- 2004 Jobs Hollow Doser Big Four Hollow Snake Hollow
- 2006 Essex Doser Lost Run Phase I
- 2007 Lost Run Phase II Lost Run Subsidence and Portal Closures
- 2008 Shawnee Steel Slag Leach Bed
- 2010 Jobs Hollow Doser Maintenance II Coe Hollow
- 2012 Lost Run II Maintenance Big Four Hollow LLB

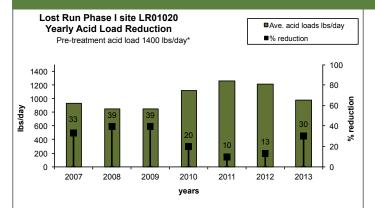
Italicized indicates projects are not actively monitored for acid and metal load reduction purposes


Generated by Non-Point Source Monitoring System www.watersheddata.com


Yearly acid and metal load reduction trends per project

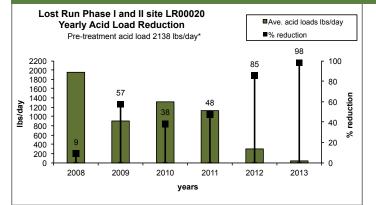
Similar to other environmental best management practices (BMPs), performance of passive acid mine drainage reclamation projects are also expected to decline with time. Active treatment systems are not expected to decline with time but sometimes need to be maintained to perform adequately. Currently, operation and maintenance plans are being designed for each existing system and are planned for future projects. The graphs below show the mean annual acid and metal load reduction using the Stoertz Water Quality Evaluation Method (Kruse et al., 2014) for each year (or group of years) during post-reclamation from the project effluent. From these graphs the rate of decline (and/or improvement) with time of the treatment system is implied. Knowing the rate of decline will aid in the implementation of operation and maintenance plans.


Grimmett Hollow site JH09020

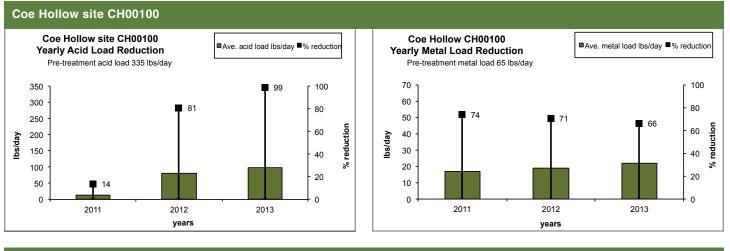


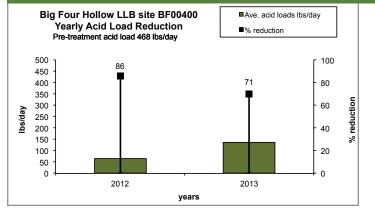
Generated by Non-Point Source Monitoring System www.watersheddata.com

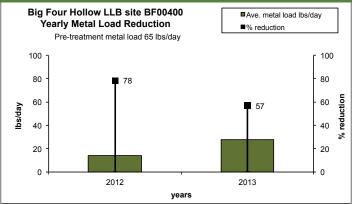
Yearly acid and metal load reduction trends per project



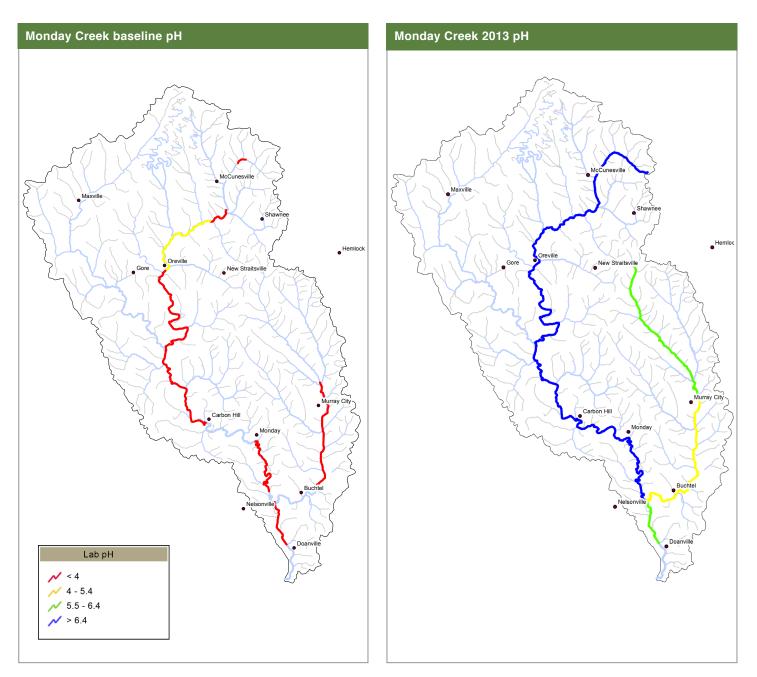
Lost Run Phase I site LR01020


Lost Run Phase I and II site LR00020



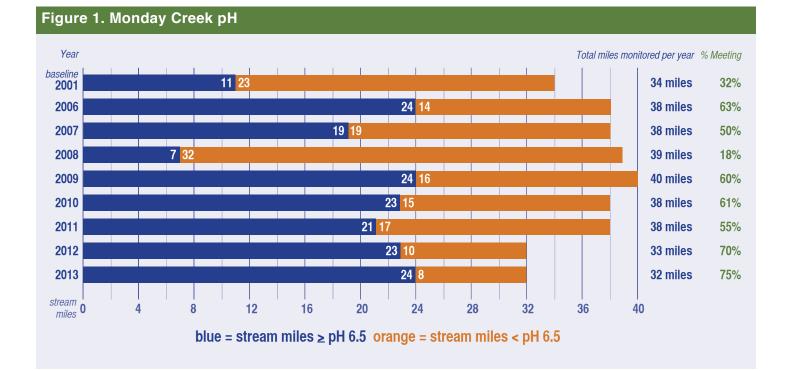

Generated by Non-Point Source Monitoring System www.watersheddata.com

Yearly acid and metal load reduction trends per project


Big Four Hollow LLB site BF00400

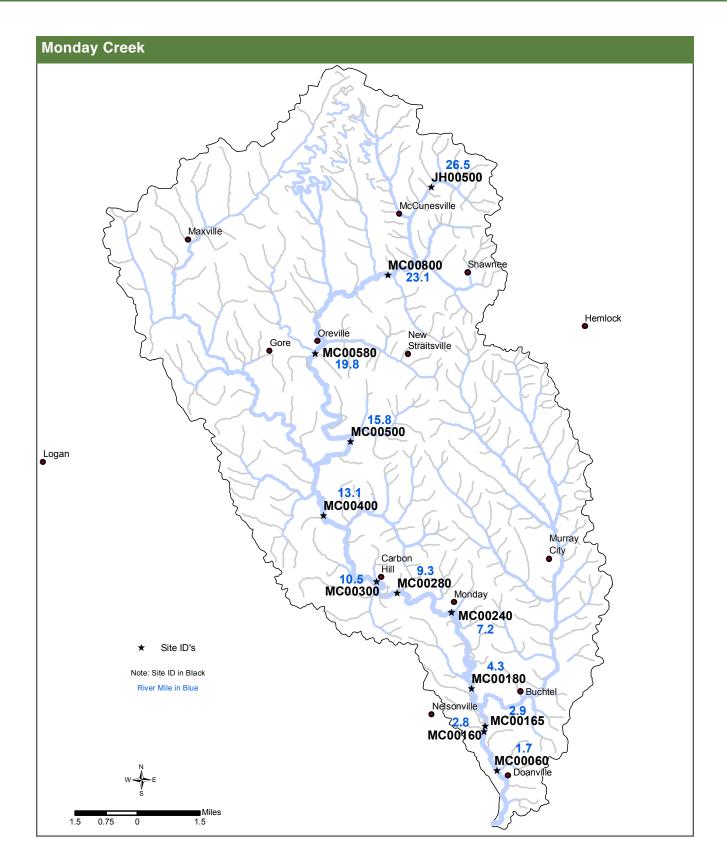
Generated by Non-Point Source Monitoring System www.watersheddata.com

Chemical Water Quality



In Monday Creek pH values have improved throughout the watershed from baseline conditions (2001) to 2013. From 2001 (32%) to 2013 (75%) there has been 43% increase in the number of stream miles that meet the pH target of 6.5.

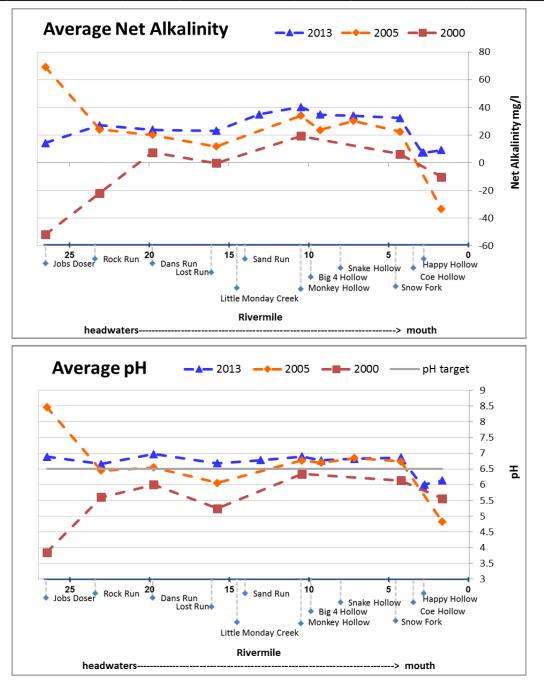
Generated by Non-Point Source Monitoring System www.watersheddata.com


Chemical Water Quality

There are approximately 32 stream miles monitored each year along the mainstem of Monday Creek, 38 when major tributary Snow Fork is included. The restoration target for pH is 6.5. In 2007, 19 stream miles of the 38 monitored met the pH target of 6.5. However in 2008 only 7 miles of the 39 miles monitored met this target. In 2009 and 2010 data shows an increase again with approximately 24 of the 39 miles monitored meeting the pH target. In 2011, the site near Lost Run MC00500 dropped below the pH target with an average pH value of 6.24. In 2012, stream miles meeting the pH target match 2010. The mainstem of Snow Fork, downstream of Essex Doser has been discontinued for monitoring. Site SF00940 represents the five miles missing from the total miles monitored in past years 38 down to 33 (Figure 1). Snow Fork fails to meet the pH target of 6.5 and treatment in this basin is unlikely.

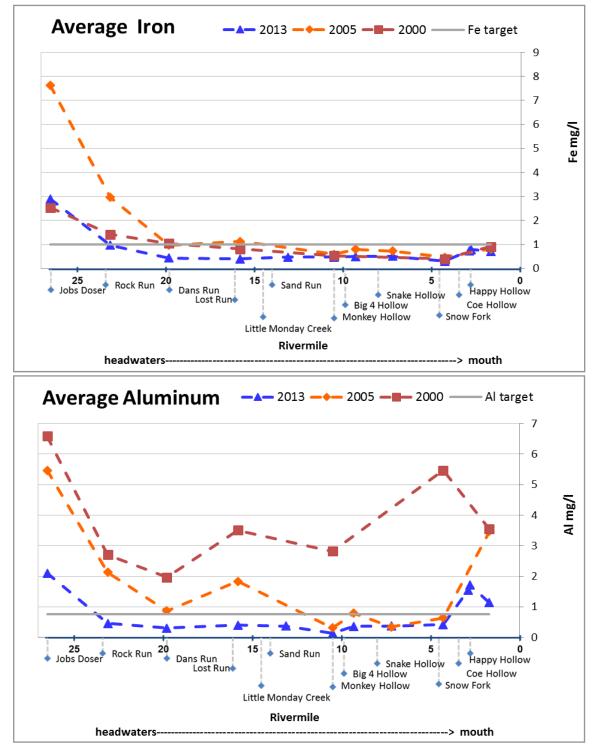
Generated by Non-Point Source Monitoring System www.watersheddata.com

Chemical Water Quality

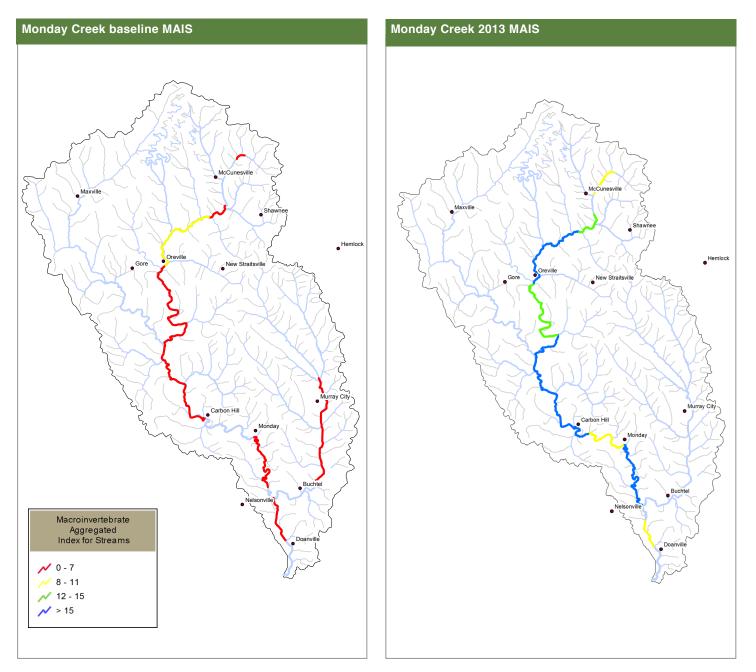


Generated by Non-Point Source Monitoring System www.watersheddata.com

Chemical water quality analysis per stream reach


Chemical water quality changes along the mainstem of Monday Creek are shown in the stream reach graphs below. Chemical long-term monitoring data is utilized to generate line graphs along the stream gradient from headwaters to the mouth. Along the x-axis named tributaries are shown to illustrate sources of water entering the mainstem. A list of longterm monitoring sites utilized to generate the graphs with their river miles are shown below.

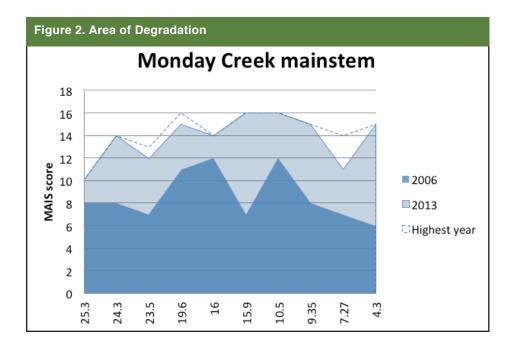
Monday	y Creek Ma	ainstem										
Site ID	JH00500	MC00800	MC00580	MC00500	MC00400	MC00300	MC00280	MC00240	MC00180	MC00165	MC00160	MC00060
Rivermile	26.5	23.1	19.8	15.8	13.1	10.5	9.3	7.2	4.3	2.9	2.8	1.7


Generated by Non-Point Source Monitoring System www.watersheddata.com

Monday	y Creek M	ainstem										
Site ID	JH00500	MC00800	MC00580	MC00500	MC00400	MC00300	MC00280	MC00240	MC00180	MC00165	MC00160	MC00060
Rivermile	26.5	23.1	19.8	15.8	13.1	10.5	9.3	7.2	4.3	2.9	2.8	1.7

Generated by Non-Point Source Monitoring System www.watersheddata.com

Biological Water Quality



MAIS samples were collected throughout Monday Creek at established annual monitoring stations from 2001 through 2013.

Generated by Non-Point Source Monitoring System www.watersheddata.com

Biological Water Quality

The majority of long-term monitoring sites along the Monday Creek mainstem have shown steady improvements in biological quality over the last ten years (Figures 2 and 3). By 2013, nine of ten sites show statistically significant (P < 0.05) improvements in biological scores since 2006. Sites in the upper most half of the watershed (RM 25.3 to 16) have consistently achieved their highest scores over the past few years. This was another good year for Monday Creek, with four sites in the watershed earning new high scores and notable improvements in the lower portion (downstream for RM 9.35). The two lowermost sites on the mainstem showed particularly strong improvement in 2013 compared to 2012, perhaps from cumulative improvements in water quality upstream and a good flow year.

The blue dashed line identifies the highest MAIS score ever achieved at that site throughout the monitoring time period.

Figure 3	. Monc	lay Cre	eek M <i>A</i>	AIS Re	gressi	ons										
RM	2001	2002	2003	2005	2006	2007	2008	2009	2010	2011	2012	2013	Linear trend	R square	p-value	No. of years
JH00500	4	6	4	7	6	5	4	7	8	9	11	10	improved	0.600	0.014	12
25.3				7	8	7	4	9	6	10	10	10	no change	0.323	0.110	9
24.3				6	8	12	12	11	11	12	12	14	improved	0.657	0.008	9
23.5	5	3	1	11	7	9	12	7	13	11	13	12	improved	0.647	0.002	12
19.6	8	9	10	13	11	12	12	13	16	14	16	15	improved	0.850	0.0001	12
16	2	6	6		12	11	10	10	10		14	14	improved	0.802	0.0005	12
15.8					7	8		5			15	16	somewhat imp.	0.724	0.067	8
10.5	5	10	13	13	12	14		12	16	16	15	16	improved	0.674	0.001	12
9.4					8	9	10	9	14	12	10	15	improved	0.560	0.033	8
7.3				8	7	7	8	10	14	10	8	11	no change	0.292	0.133	9
4.3	2	6	2	8	6	9	7	4	13	9	9	15	improved	0.578	0.004	12

SUNDAY CREEK WATERSHED REPORT

Generated by Non-Point Source Monitoring System www.watersheddata.com

Six stream captures located in the Sunday Creek Watershed were closed and completed from 2004-2011. A total of 2,401 acres surface drainage area drained year round into the deep mines and, as a result of closing these subsidence holes, 884,021,000 gallons per year were diverted from entering into the deep mine, thus abating the generation of acid mine drainage. Expected additional alkaline loading from these closures returning clean water to the receiving streams is 986 lbs/day. As result of the Rodgers Hollow Subsidence closure, the deep mine discharge in Drakes has seen a reduction in acidity load by 18 lbs/day.

Generated by Non-Point Source Monitoring System www.watersheddata.com

Timeline of t	he Sunday Creek Watershed Project Milestones and AMD Projects
1999	Sunday Creek Watershed Group (SCWG) Founded
2000	
2001	Rural Action adds VISTA volunteer to SCWG staff
2002	SCWG Hired First Watershed Coordinator, funded for six years
2003	 Sunday Creek Watershed AMDAT Completed SCWG Watershed Action Plan Conditionally Endorsed by the State of Ohio
2004	Congo Subsidence/ Stream Capture Project Completed
2005	Sunday Creek Watershed TMDL Study Completed
2006	SCWG Coordinator funded three more years
2007	 Pine Run Stream Capture Project Completed Rodger's Hollow Stream Capture Project Completed Corning Gob Pile Reclamation Project Completed
2008	
2009	 Congo Run (CR-11/ Little Hocking) Stream Capture Project Completed SCWG Coordinator funded for three more years Rural Action adds AmeriCorps member to SCWG staff
2010	West Branch Headwaters Phase I Project Completed West Branch 43 Stream Capture Project Completed
2011	 SCWG Watershed Action Plan Officially Endorsed by the State of Ohio West Branch Headwaters Phase II Project Completed West Rendville Stream Capture Project Completed
2012	
2013	Pine Run Doser installed 2013 Stream Health Report 52

Generated by Non-Point Source Monitoring System www.watersheddata.com

Sunday Creek Projects

Acid mine drainage reclamation projects completed in Sunday Creek Watershed:

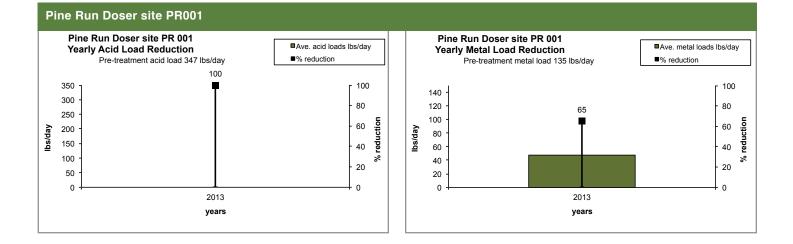
- 2004 Congo Stream Capture
 2007 Pine Run Stream Capture

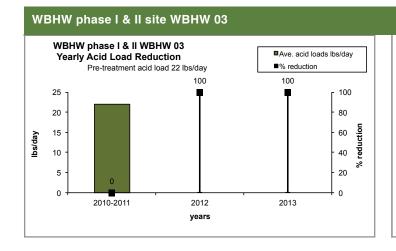
 Corning Gob Floodplain
 Rodger's Hollow Stream Capture

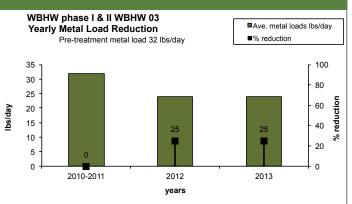
 2009 Little Hocking Stream Capture CR 11
 2010 West Branch 43 Stream Capture

 Pine Run Stream Capture Maintenance
 West Branch Sunday Creek Headwaters Phase I & II
- 2011 West Rendville Stream Capture
- 2013 Pine Run Doser

Italicized indicates projects are not actively monitored for acid and metal load reduction purposes

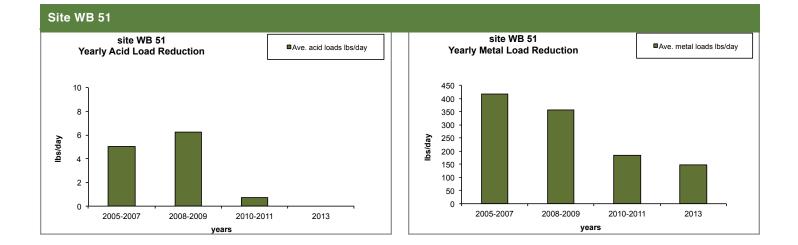

Most of the remediation in Sunday Creek consists of source control (i.e. stream capture, gob pile capping, etc...) and aren't actively monitored for acid and metal load reductions. Therefore target restoration sites along the West Branch of Sunday Creek mainstem have been selected to analyze the acid and metal load reductions, these sites include:

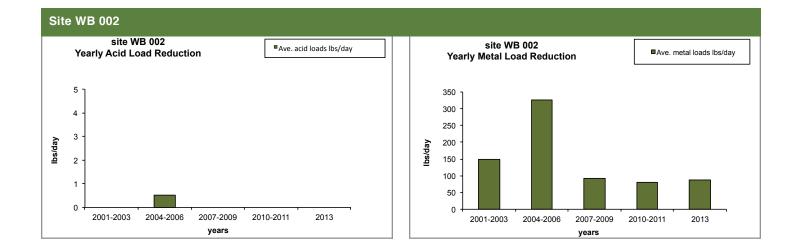

WBHW 03, WB 51, and WB 002. Yearly load reductions for these mainstem sites are shown on the next few pages.


Generated by Non-Point Source Monitoring System www.watersheddata.com

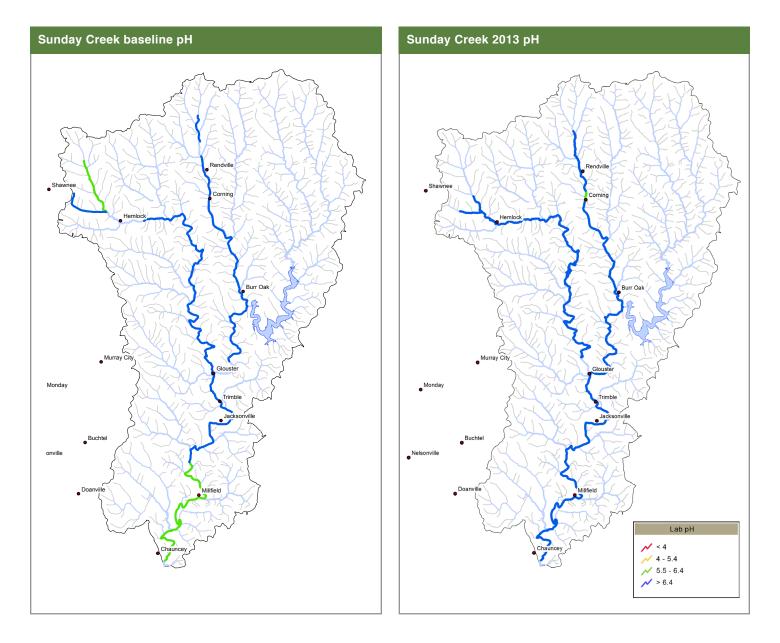
Yearly acid and metal load reduction trends per project

Similar to other environmental best management practices (BMPs), performance of passive acid mine drainage reclamation projects are also expected to decline with time. Active treatment systems are not expected to decline with time but sometimes need to be maintained to perform adequately. Currently, operation and maintenance plans are being designed for each existing system and are planned for future projects. The graphs below show the mean annual acid and metal load reduction using the Stoertz Water Quality Evaluation Method (Kruse et al., 2014) for each year (or group of years) during post-reclamation from the project effluent. From these graphs the rate of decline (and/or improvement) with time of the treatment system is implied. Knowing the rate of decline will aid in the implementation of operation and maintenance plans.



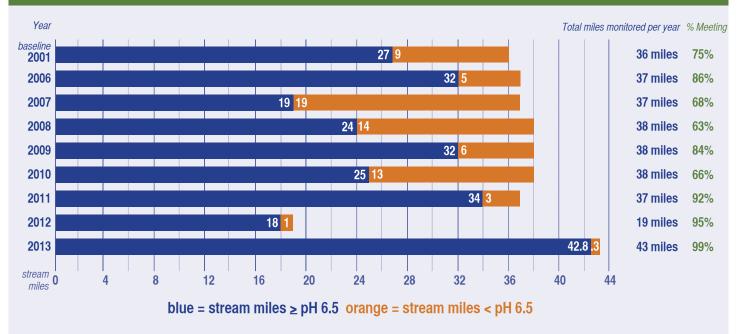


Generated by Non-Point Source Monitoring System www.watersheddata.com

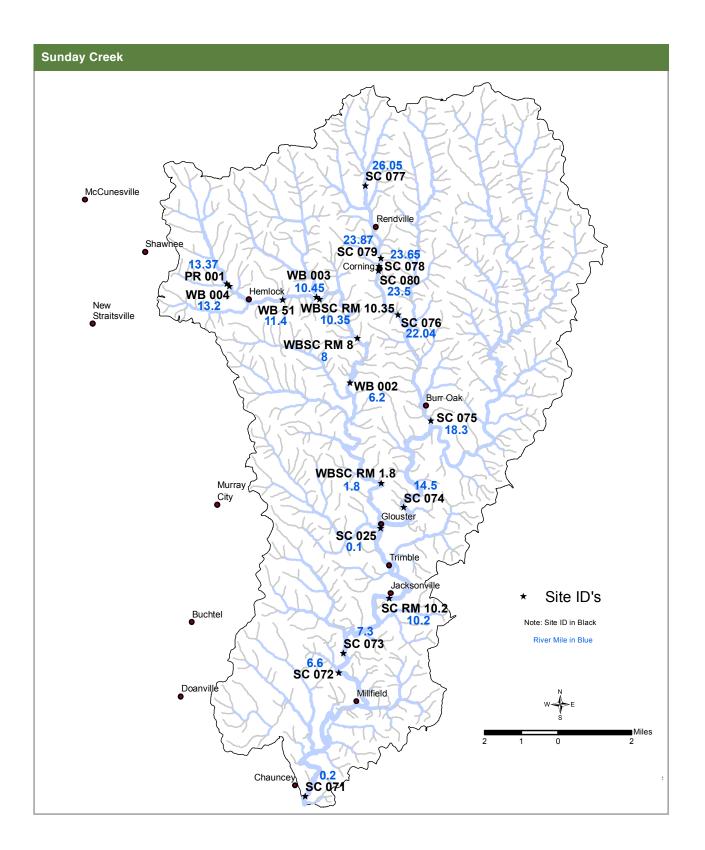

Yearly acid and metal load reduction trends per project

Generated by Non-Point Source Monitoring System www.watersheddata.com

Chemical Water Quality


Water quality along the West Branch of Sunday Creek was degraded from baseline conditions in 2001 to 2007. Values of average pH dropped from >6.4 to 4.0-5.4 range in 2005 to 2006 and remained constant in 2007. When the subsidence features increased in Rodger's Hollow, funneling more water into the mine that generated AMD and discharged it into West Branch of Sunday Creek, the water quality decreased. However, after the subsidence closure in Rodger's Hollow in late 2007, in 2008 data for the first time shows an increase in pH along this stream segment. As of 2013 all sites met the pH target of 6.5 except for a small section of a stream directly downstream of the Corning discharge.

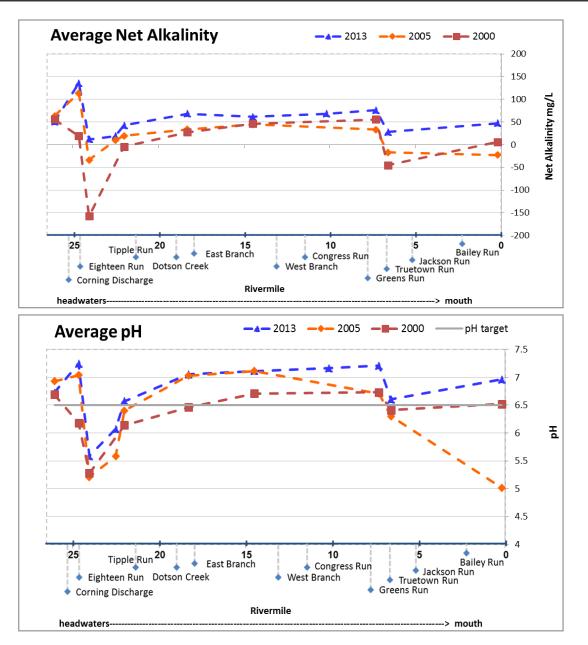
Generated by Non-Point Source Monitoring System www.watersheddata.com


Chemical Water Quality

There are approximately 38 stream miles monitored each year along the mainstem of Sunday Creek and major tributary West Branch. A restoration target for pH has been set to 6.5. Since 2001 there have been fluctuations in the number of stream miles that meet this target. Currently, in 2013 all 42 miles of stream miles monitored meet the pH target.

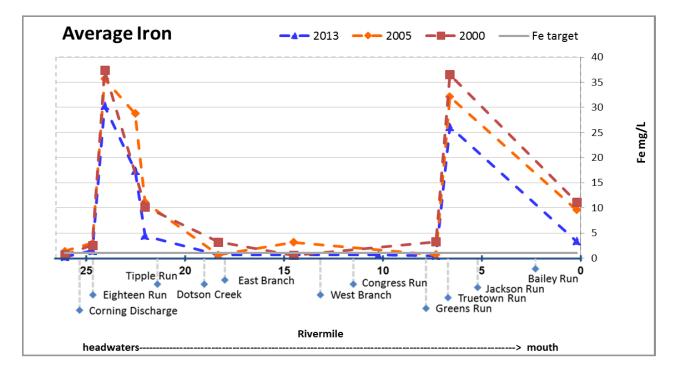
Sunday Creek pH

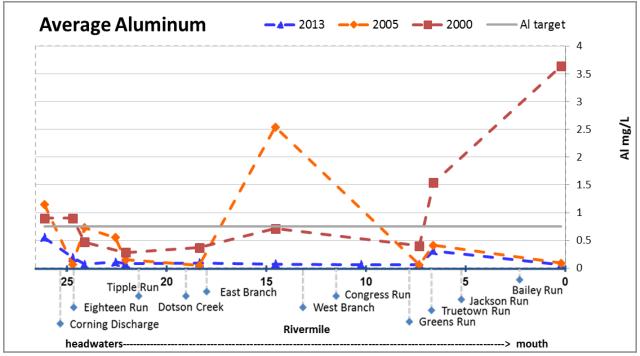
Generated by Non-Point Source Monitoring System www.watersheddata.com

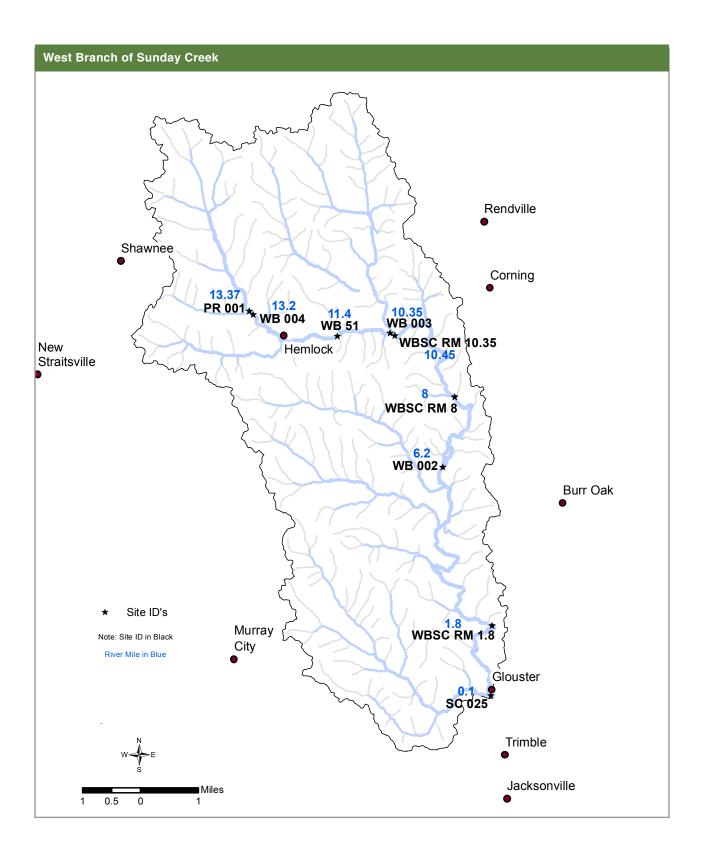


Generated by Non-Point Source Monitoring System www.watersheddata.com

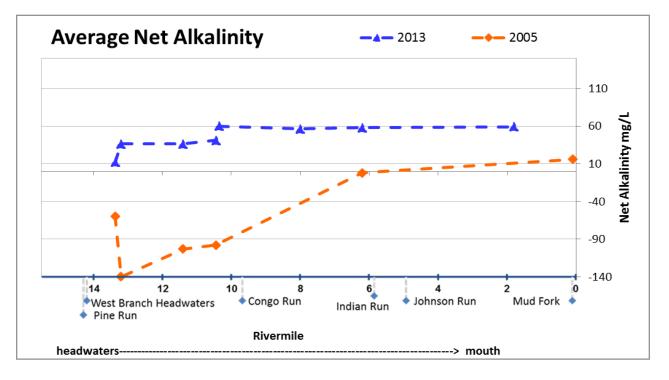
Chemical water quality analysis per stream reach

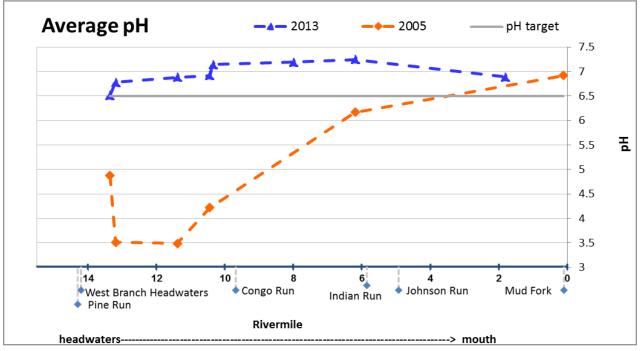

For purposes of analyzing chemical water quality changes along the mainstem of receiving stream where AMD reclamation projects have been completed, Sunday Creek has been divided into the following stream segments: Sunday Creek Mainstem and West Branch of Sunday Creek. Within these stream reaches, chemical long-term monitoring data is utilized to generate line graphs along the stream gradient from headwaters to the mouth. Along the x-axis named tributaries are shown to illustrate sources of water entering the mainstem. A list of long-term monitoring sites utilized to generate the graphs with their river miles are shown before each set of stream reach graphs.


Sunday Cr	eek Mains	tem									
Site ID	SC 077	SC 079	SC 078	SC 080	SC 076	SC 075	SC 075	SC 074	SC 073	SC 072	SC 071
Rivermile	26.05	23.87	23.65	23.5	22.04	18.3	18.3	14.5	7.3	6.6	0.2

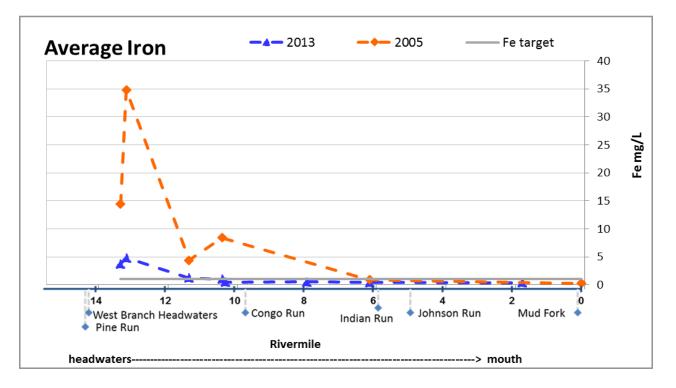

Generated by Non-Point Source Monitoring System www.watersheddata.com

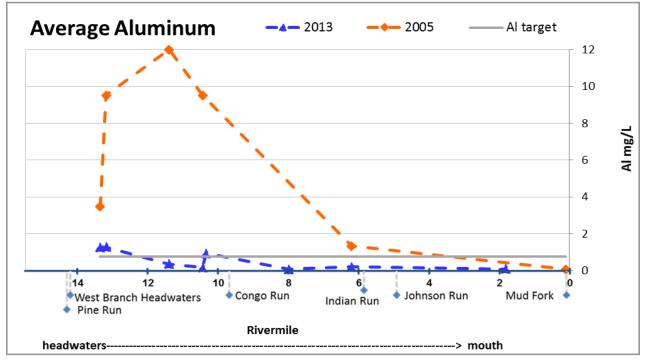
Sunday Cr	eek Mainst	tem								
Site ID	SC 077	SC 079	SC 078	SC 080	SC 076	SC 075	SC 074	SC 073	SC 072	SC 071
Rivermile	26.05	24.65	24.04	22.5	22	18.3	14.5	7.3	6.6	0.2




Generated by Non-Point Source Monitoring System www.watersheddata.com

Generated by Non-Point Source Monitoring System www.watersheddata.com


West Brand	h of Sunday	/ Creek							
Site ID	PR 001	WB 004	WB 51	WB 003	WBSC RM 10.35	WBSC RM 8	WB 002	WBSC RM 1.8	SC 025
Rivermile	13.37	13.2	11.4	10.45	10.35	8	6.2	1.8	0.1

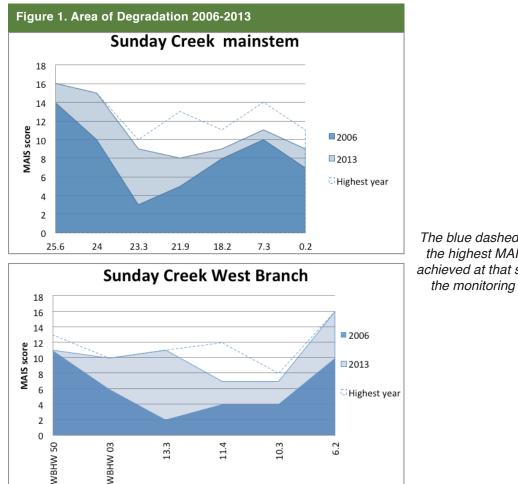


Generated by Non-Point Source Monitoring System www.watersheddata.com

West Brand	h of Sunda	y Creek							
Site ID	PR 001	WB 004	WB 51	WB 003	WBSC RM 10.35	WBSC RM 8	WB 002	WBSC RM 1.8	SC 025
Rivermile	13.37	13.2	11.4	10.45	10.35	8	6.2	1.8	0.1

Generated by Non-Point Source Monitoring System www.watersheddata.com

Biological Water Quality


MAIS samples were collected throughout Sunday Creek at established annual monitoring stations from 2001 through 2013.

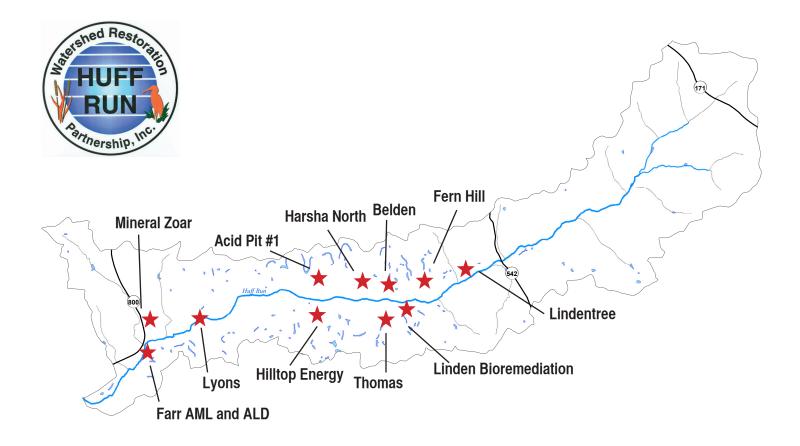
Generated by Non-Point Source Monitoring System www.watersheddata.com

Biological Water Quality

The biological guality along the upper portion of the Sunday Creek mainstem improved this year compared to 2012, when most sites fell uniformly below their potential, as indicated by previously achieved high scores (Figure 1). In 2013, the two uppermost sites (RM 25.6 and 24.0) achieved their highest scores and the next two downstream sites (RM 23.3 and 21.9) also showed improvement compared to previous years. The five mile stream section from RM 23.3, just downstream of the Corning discharge at Corning Park, to RM 18.1 (across from the entrance to Tom Jenkins Dam) has relatively high year-toyear variability in biological quality, because they occasionally support high MAIS scores even though the water quality is generally impaired by the Corning discharge. This section does not consistently reach its full recovery potential, perhaps because of episodic pulses of acidity and/or metal precipitates, which are often observed during the summer. This section of stream has not shown a statistical improvement since 2006. However, further down, the mainstem continues to improve and the site just above the Truetown discharge (RM 7.3) consistently supports a high quality biological community (MAIS score 11 in 2013, sometimes as high as 14). While the furthest downstream section of Sunday Creek is badly impaired by the Truetown discharge and cumulative upstream impairments, it is still the only mainstem site that has shown consistent and significant improvement in MAIS scores since 2006.

In contrast, improvements in the West Branch are more evident. Three sites in the West Branch continue to exhibit significant long-term improvement in macroinvertebrate scores: the headwaters site WBHW 03, the site at RM 13.3 (WB 004), and the most downstream West Branch monitoring site (WB 002 at RM 6.2). RM 13.3, which supported almost no macroinvertebrates in 2005 (MAIS score of "1"), earned a new high score of "11" this year. The most downstream West Branch monitoring site at RM 6.2 surpassed its high score of "15" in 2012 with a score of "16" in 2013, indicating the presence of a high quality macroinvertebrate community (Figure 2).

The blue dashed line identifies the highest MAIS score ever achieved at that site throughout the monitoring time period.


Generated by Non-Point Source Monitoring System www.watersheddata.com


Biological Water Quality

Figure 2. Sur	nday C	reek N	IAIS R	egress	sions											
RM	2001	2002	2003	2005	2006	2007	2008	2009	2010	2011	2012	2013	Linear trends	R square	P- value	No. of Yrs
Mainstem																
24				12	10	10	14	12	13	12	11	15	no change	0.235	0.185	9
23.3				5	3	2	7	12	5	10	4	9	no change	0.197	0.231	9
21.9	2	1	2	11	5	5	9	2	3	7	5	8	no change	0.162	0.194	12
18.2	5	9	8	10	8	10	5	7	8	11	10	9	no change	0.137	0.236	12
7.3	10	11	11	11	10	10	10	12	11	14	9	11	no change	0.036	0.553	12
0.2	4	2	3	8	7	3	6	11	8	10	7	9	improved	0.523	0.008	12
West Branch																
WBHW50					11	10	11	8	12	13	11	11	no change	0.090	0.470	8
WBHW03				5	6	4	8	6	8	10	8	10	improved	0.677	0.006	9
13.3				1	2	2	5	5	7	7	5	11	improved	0.795	0.001	9
11.4				8	4	2	7	9	5	12	10	7	no change	0.222	0.200	9
10.3				8	4	3	4	8	4	7	7	7	no change	0.089	0.435	9
6.2				7	10	8	10	10	13	13	15	16	improved	0.898	0.0001	9

HUFF RUN WATERSHED REPORT

Generated by Non-Point Source Monitoring System www.watersheddata.com

Reductions

Total acid load reduction = 83 lbs/day at site HRR08

Total acid load reduction at all project sites = 1075 lbs/day

excluding Mineral Zoar and Farr

Costs

Design \$667,412 (excluding Linden Bioremediation and Lyons II) Construction \$4,349,075

Total cost through 2013 =\$5,016,487

Generated by Non-Point Source Monitoring System www.watersheddata.com

Timeline of the	Huff Run Watershed Project Milestones & AMD Projects
1985	 Study funded by ODNR conducted by Benatec Associates to identify acid problems in Huff Run Watershed
\Rightarrow	
1988	First abandoned mine land project, Jobes, completed in the watershed
>	
1996	Huff Run Watershed Restoration Partnership founded
\Rightarrow	
2000	 Huff Run AMDAT completed Huff Run Watershed Coordinator funded for six years First acid mine drainage restoration project, Farr, completed in watershed
2001	First draft of Huff Run Watershed Plan completed
2002	Linden Bioremediation Project constructed
2003	Acid Pit Restoration Project completed
2004	Lindentree Restoration Project completed
2005	 Rural Action and Huff Run awarded US EPA Targeted Watershed Grant Rural Action adds VISTA volunteer to Huff Run staff Second draft of Huff Run Watershed Plan authored, endorsed by the State of Ohio Lyons Restoration Project constructed
2006	Harsha North Restoration project completed
2007	
2008	 Belden Restoration Project constructed Fern Hill (HR-42) Phase II Project constructed
2009	 Huff Run Watershed Coordinator funded for three years Mineral Zoar Project completed Rural Action adds AmeriCorps member to Huff Run staff
2010	Thomas Project, Fern Hill Pond A & Belden Gob pile constructed
2011	Lyons II constructed
2012	Hilltop Restoration Project started
2013	 Completed Hilltop Restoration Project MWCD Partners in Watershed Management Grant awarded for environmental education and community outreach

Generated by Non-Point Source Monitoring System www.watersheddata.com

Huff Run Projects

Acid mine drainage reclamation projects completed in Huff Run Watershed:

- 2003 Farr Project

 Linden Bioremediation Project

 2004 Acid Pit #1 Project
 2005 Lyons Project

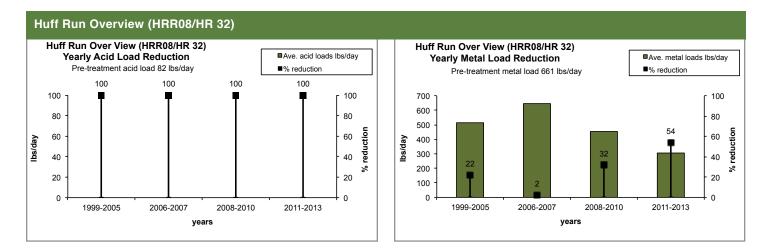
 Lindentree Project

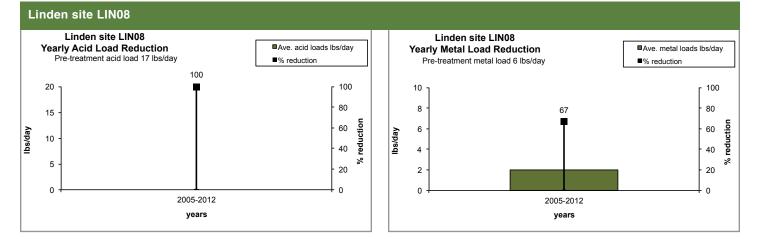
 2006 Harsha North Project
 2008 Fern Hill HR-42 Pits A, B, & C

 Belden and Belden Gob Pile Project

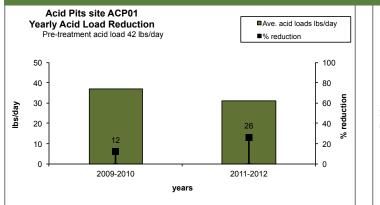
 2009 Mineral Zoar

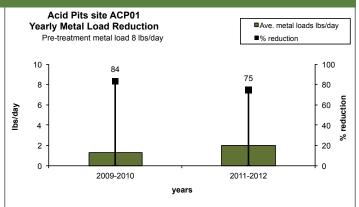
 2010 Thomas Project
 Lyons II
- **2013** Hilltop Energy Project* no high flow

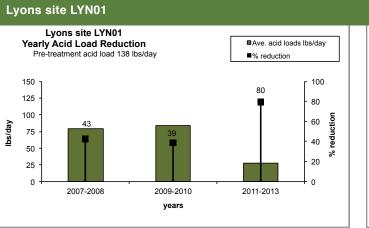

Italicized indicates projects are not actively monitored for acid and metal load reduction purposes

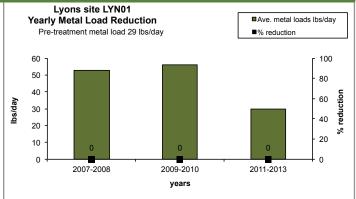

*Indicates no post yearly trend graphs due to lack of data

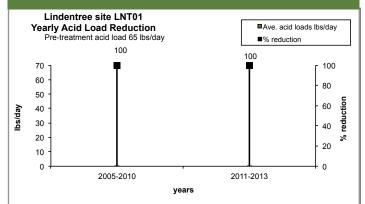
Generated by Non-Point Source Monitoring System www.watersheddata.com


Yearly acid and metal load reduction trends per project

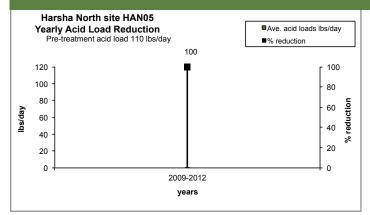

Similar to other environmental best management practices (BMPs), performance of passive acid mine drainage reclamation projects are also expected to decline with time. Active treatment systems are not expected to decline with time but sometimes need to be maintained to perform adequately. Currently, operation and maintenance plans are being designed for each existing system and are planned for future projects. The graphs below show the mean annual acid and metal load reduction using the Stoertz Water Quality Evaluation Method (Kruse et al., 2014) for each year (or group of years) during post-reclamation from the project effluent. From these graphs the rate of decline (and/or improvement) with time of the treatment system is implied. Knowing the rate of decline will aid in the implementation of operation and maintenance plans.

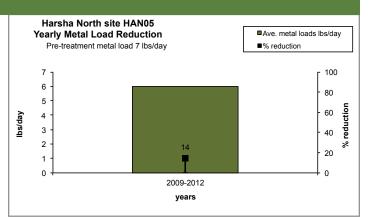

Acid Pits site ACP01



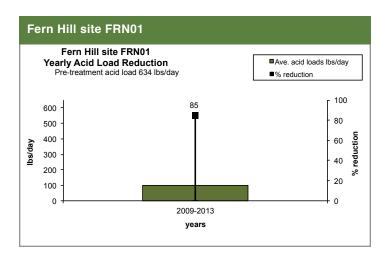

Generated by Non-Point Source Monitoring System www.watersheddata.com

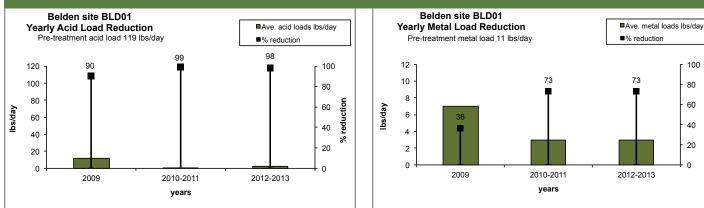
Yearly acid and metal load reduction trends per project



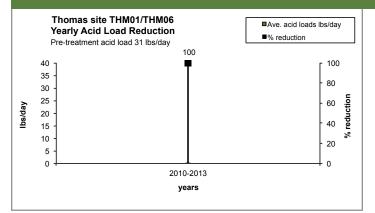


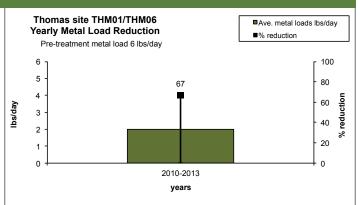
Lindentree site LNT01


Harsha North site HAN05



Generated by Non-Point Source Monitoring System www.watersheddata.com


Yearly acid and metal load reduction trends per project



Belden site BLD01

Thomas site THM01/THM06

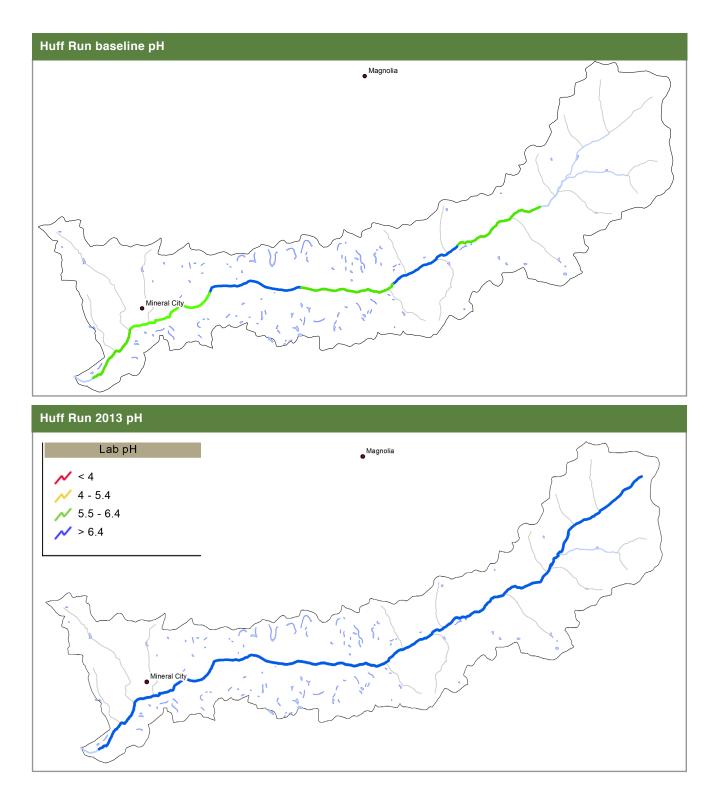
100

80

60

40

20

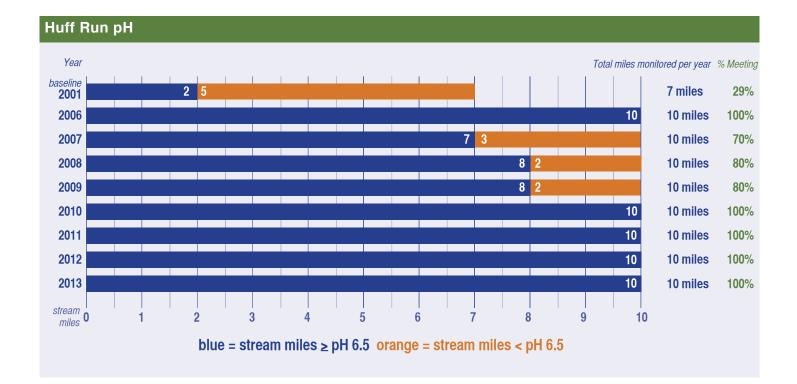

0

reduction

~

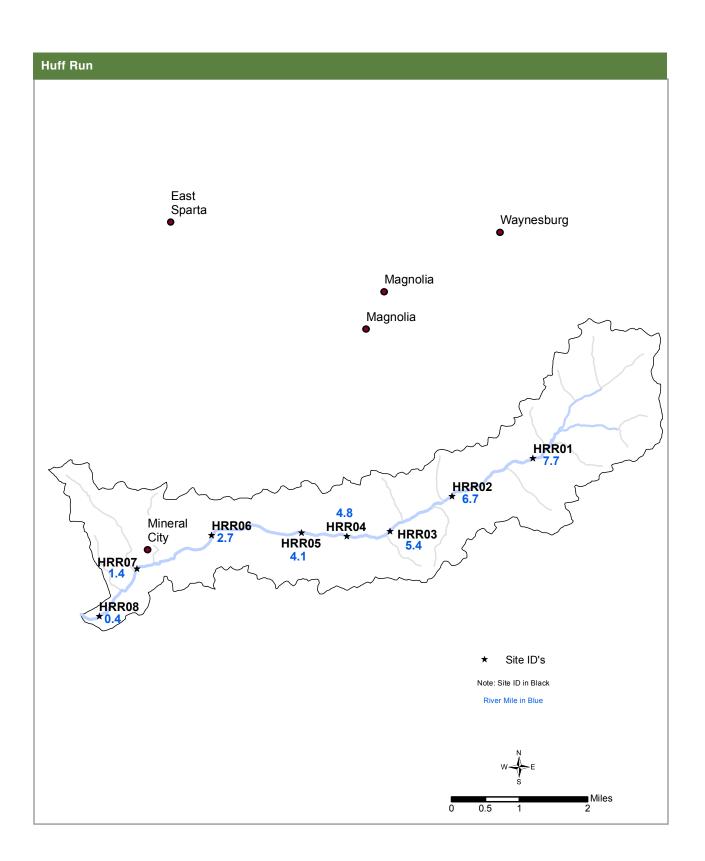
Generated by Non-Point Source Monitoring System www.watersheddata.com

Chemical Water Quality



Huff Run pH values have improved from baseline conditions (1985-1998) to 2013. The entire length of Huff Run has met the pH target (6.5) for the last four years.

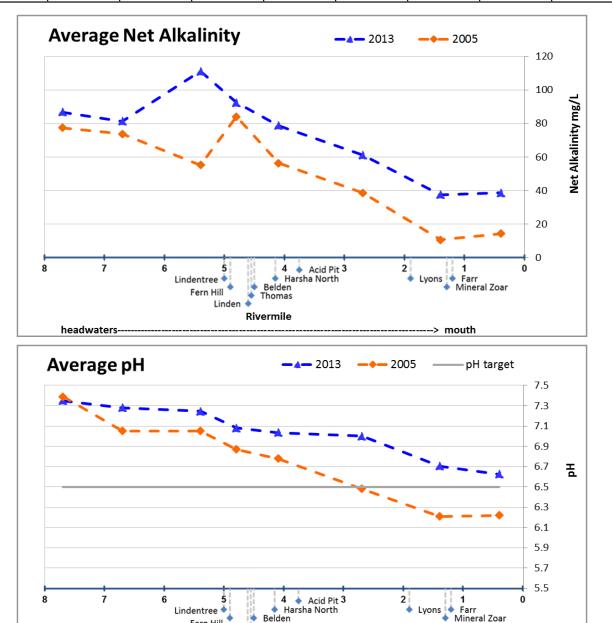
Generated by Non-Point Source Monitoring System www.watersheddata.com


Chemical Water Quality

The mainstem of Huff Run is approximately 10 miles in length with monitoring occurring year round. In 2009, 8 miles met the pH target of 6.5 while the two downstream stream reaches (HRR08 and HRR07) fell slightly below the target with an average pH of 6.4. Since 2010 to 2013, all 10 miles met the pH target.

Generated by Non-Point Source Monitoring System www.watersheddata.com

Chemical water quality analysis per stream reach



Generated by Non-Point Source Monitoring System www.watersheddata.com

Chemical water quality analysis per stream reach

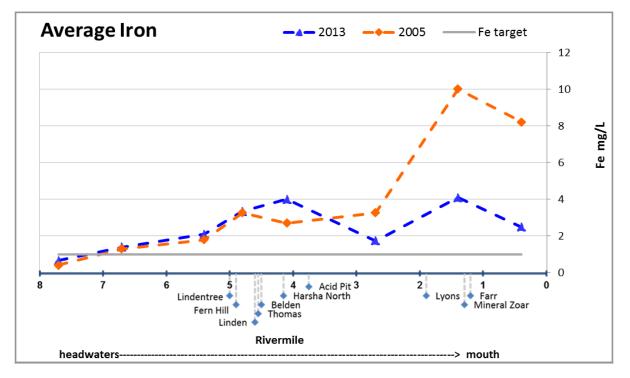
Chemical water quality changes along the mainstem of Huff Run are shown in the stream reach graphs below. Chemical long-term monitoring data is utilized to generate line graphs along the stream gradient from headwaters to the mouth. Along the x-axis named tributaries are shown to illustrate sources of water entering the mainstem. A list of long-term monitoring sites utilized to generate the graphs with their river miles are shown below.

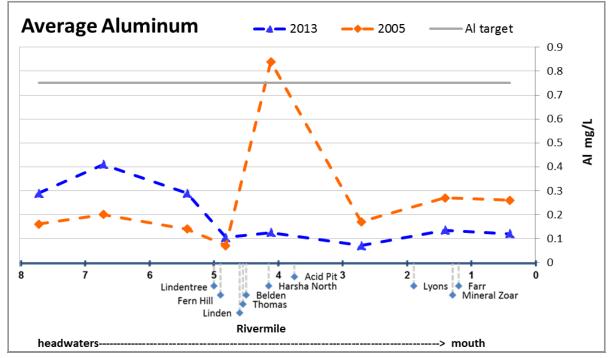
Huff Run								
Site ID	HRR01	HRR02	HRR03	HRR04	HRR05	HRR06	HRR07	HRR08
Rivermile	7.7	6.7	5.4	4.8	4.1	2.7	1.4	0.4

----> mouth

Belden Thomas

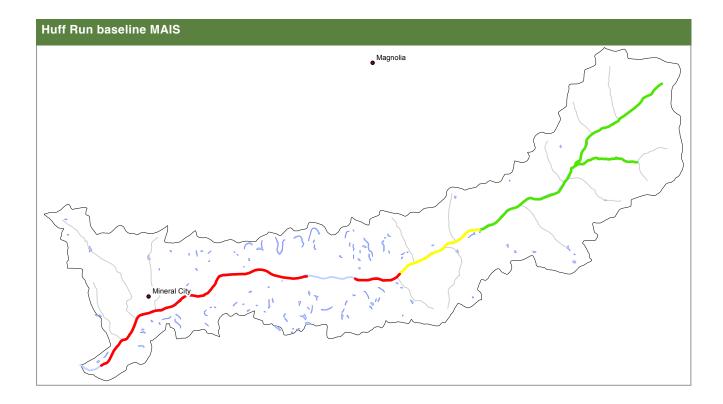
Rivermile

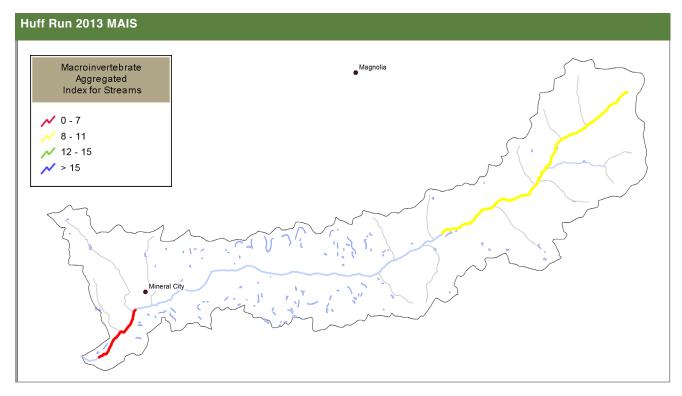

4 Fern Hill Linden ł


headwaters---

Generated by Non-Point Source Monitoring System www.watersheddata.com

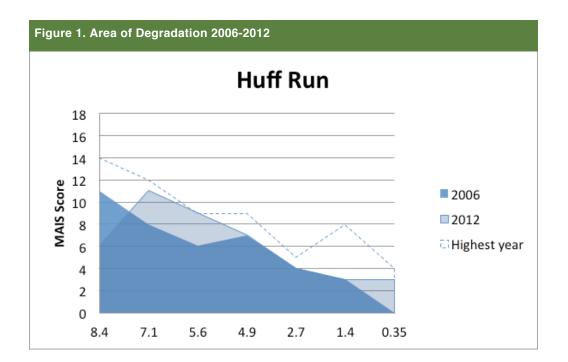
Chemical water quality analysis per stream reach


Huff Run								
Site ID	HRR01	HRR02	HRR03	HRR04	HRR05	HRR06	HRR07	HRR08
Rivermile	7.7	6.7	5.4	4.8	4.1	2.7	1.4	0.4



Generated by Non-Point Source Monitoring System www.watersheddata.com

Biological Water Quality



Biological quality in Huff Run decreases from headwaters to the mouth. Only 3 sites along the mainstem were monitored in 2013.

Generated by Non-Point Source Monitoring System www.watersheddata.com

Biological Water Quality

Biological data results presented here are from 2012, limited biological data was collected in Huff Run in 2013. A full set of biological data is scheduled for collection in 2014. Biological quality in Huff Run (based on macroinvertebrate data from 2012) declines from the headwaters to the mouth (Figure 1). Although several stations have shown transient improvements since 2006, these trends have not been sustained long enough to reach statistical significance in 2012 (Figure 2). Based on past highest year scores, virtually all sites have potential for additional improvement, but only the two uppermost headwater sites have achieved the target MAIS score of "12" in the past 8 years of monitoring. In 2012, the uppermost headwater site (RM 8.4) had an unusually low score of "6", compared to its usual average score of 12-13, because a key section of forested habitat at one end of the designated reach was inadvertently not sampled in 2012.

Figure 2. H	luff Ru	n MAI	S Reg	ressio	ns							
RM	2005	2006	2007	2008	2009	2010	2011	2012	Linear trends	R square	P-value	No. of Years
8.4	14	11	12	12	13	9	13	6	no change	0.365	0.112	8
7.1	12	8	8	8	9	11	11	11	no change	0.099	0.448	8
5.6	8	6	7	6	8	9	7	9	no change	0.238	0.220	8
4.9	6	7	9	8	9	9	6	7	no change	0.004	0.874	8
2.7	5	4	5	3	4	5	3	4	no change	0.148	0.347	8
1.4	2	3	3	2	8	2	2	3	no change	0.005	0.866	8
0.35	3	0	4	3	4	3	3	3	no change	0.093	0.464	8

LEADING CREEK WATERSHED REPORT

Generated by Non-Point Source Monitoring System www.watersheddata.com

Reductions

Costs

Total acid load reduction = 661 lbs/day

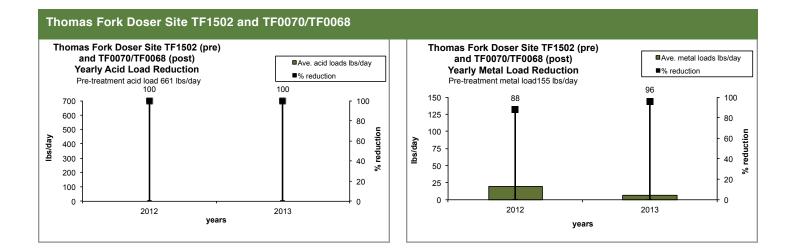
Design \$8,201 Construction \$407,23 Total Costs through 2013 = \$415,437

²⁰¹³ Stream Health Report

Generated by Non-Point Source Monitoring System www.watersheddata.com

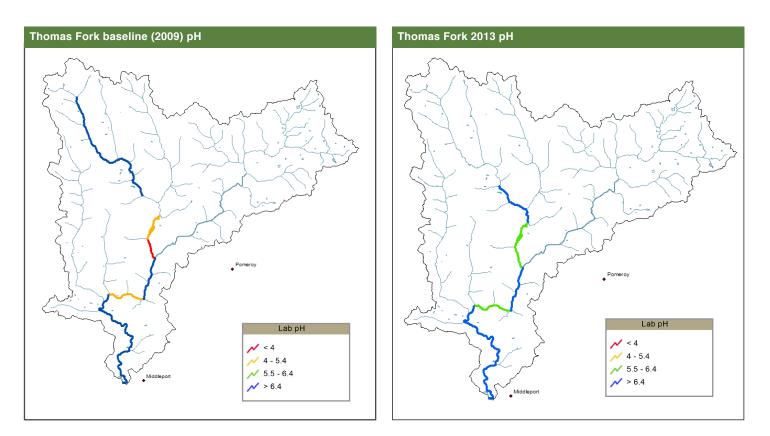
Timeline of the	e Leading Creek Watershed Project Milestones & AMD Projects	
1993	SOCCO mine release into Leading Creek	
1994		
1995	Mother's Day Flood	
1996		
1997		
1998	Leading Creek Improvement Plan by Dr. Cherry completed	
1999	USFWS began working with Meigs SWCD on watershed projects	
2000		
2001	First Leading Creek Stream Sweep conducted	
2002		
2003	 Meigs SWCD Conservation Area purchased along Little Leading Creek Meigs SWCD obtained first watershed coordinator grant 	
2004		
2005	Leading Creek Watershed Management Plan completed	
2006	Pauline Atkins Memorial Trail completed Leading Creek AMDAT Plan completed	
2007		
2008	Leading Creek TDML Report completed	
2009	 Leading Creek Water Trail established First AmeriCorps member dedicated to the Leading Creek Watershed 	
2010	 Leading 'From the Past' book completed Leading Creek Volunteer Monitor Program begun 	
2011	Freshwater mussels reintroduced	
2012	Thomas Fork Doser Project completed	
2013	 Biological observations along Thomas Fork indicate an increase in diversity of fish and macroinvertebrate species since 2010 	
	2013 Stream Health Report	83

Generated by Non-Point Source Monitoring System www.watersheddata.com

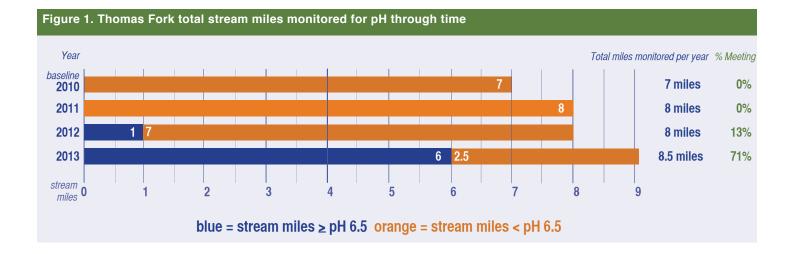

Leading Creek Projects

Acid mine drainage reclamation projects completed in Leading Creek Watershed:

2012 Thomas Fork Doser

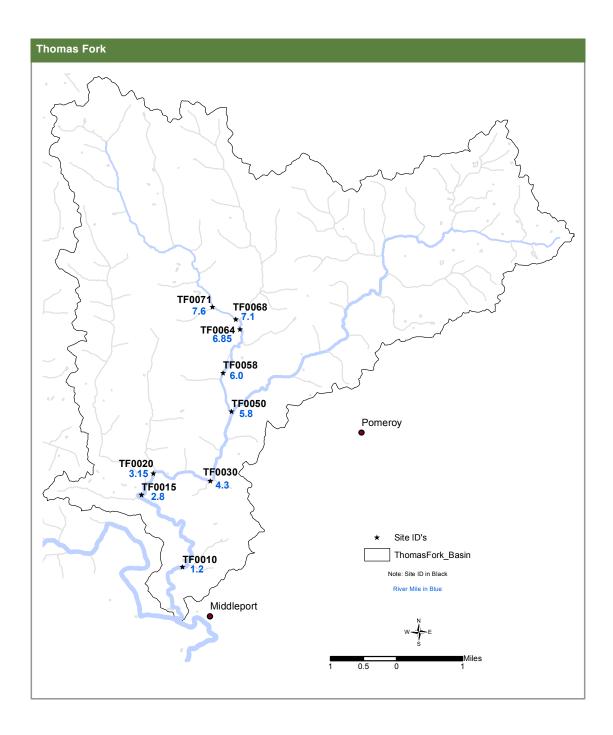

Yearly acid and metal load reduction trends per project

Similar to other environmental best management practices (BMPs), performance of passive acid mine drainage reclamation projects are also expected to decline with time. Active treatment systems are not expected to decline with time but sometimes need to be maintained to perform adequately. Currently, operation and maintenance plans are being designed for each existing system and are planned for future projects. The graphs below show the mean annual acid and metal load reduction using the Stoertz Water Quality Evaluation Method (Kruse et al., 2014) for each year (or group of years) during post-reclamation from the project effluent. From these graphs the rate of decline (and/or improvement) with time of the treatment system is implied. Knowing the rate of decline will aid in the implementation of operation and maintenance plans.



Generated by Non-Point Source Monitoring System www.watersheddata.com

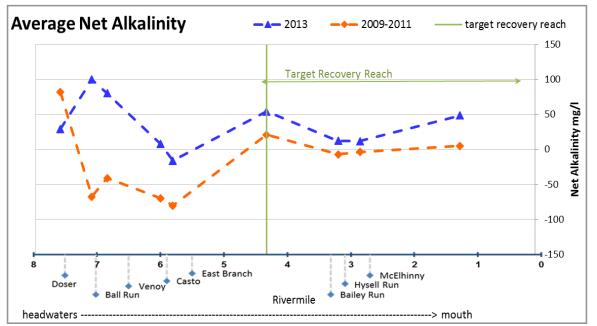
Chemical Water Quality

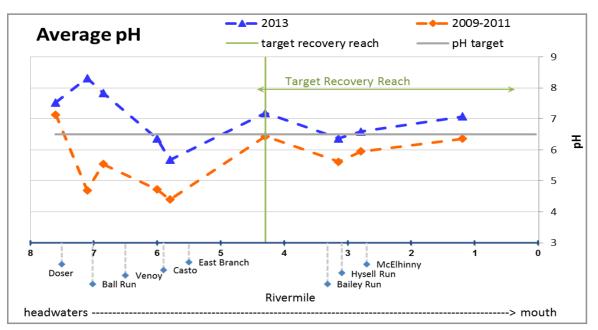


In Thomas Fork pH values on average along the mainstem do not meet the pH target of 6.5 from the 'unnamed tributary' downstream to the mouth (Figure 1).

Generated by Non-Point Source Monitoring System www.watersheddata.com

Chemical Water Quality

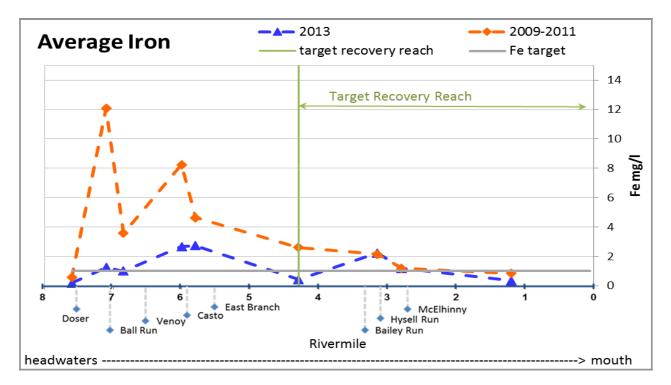


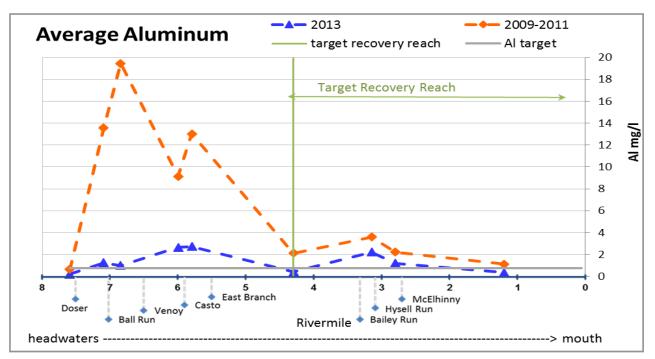

Generated by Non-Point Source Monitoring System www.watersheddata.com

Chemical Water Quality

Chemical water quality changes along the mainstem of Thomas Fork are shown in the stream reach graphs below. Chemical long-term monitoring data is utilized to generate line graphs along the stream gradient from headwaters to the mouth. Along the x-axis named tributaries are shown to illustrate sources of water entering the mainstem. A list of longterm monitoring sites utilized to generate the graphs with their river miles are shown below.

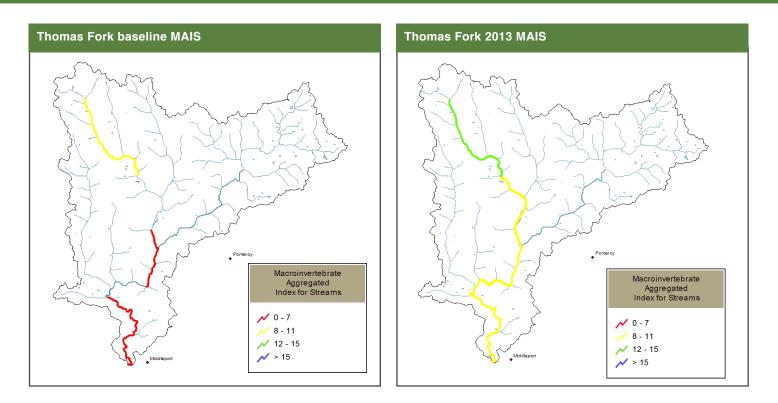
Leading Creek Watershed										
site ID	TF0071	TF0068	TF0064	TF0058	TF0050	TF0030	TF0020	TF0015	TF0010	
Rivermile	7.6	7.1	6.85	6	5.8	4.3	3.15	2.8	1.2	





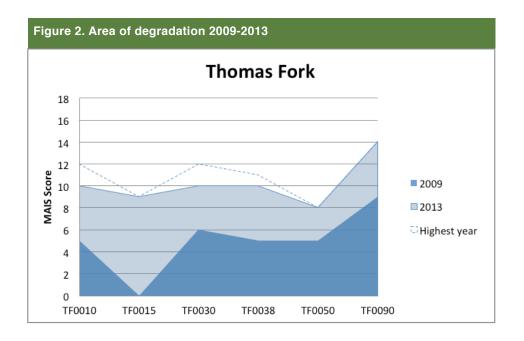
Generated by Non-Point Source Monitoring System www.watersheddata.com

Chemical Water Quality


Leading Creek Watershed									
site ID	TF0071	TF0068	TF0064	TF0058	TF0050	TF0030	TF0020	TF0015	TF0010
Rivermile	7.6	7.1	6.85	6	5.8	4.3	3.15	2.8	1.2

Generated by Non-Point Source Monitoring System www.watersheddata.com

Biological Water Quality


MAIS samples were collected along Thomas Fork a tributary to Leading Creek. These sites are along the mainstem at established long-term monitoring stations, collected from 2009 through 2013.

Generated by Non-Point Source Monitoring System www.watersheddata.com

Biological Water Quality

Thomas Fork

This year was the fifth year of biological monitoring in Thomas Fork of Leading Creek and our first opportunity to statistically test for trends in biological improvement. MAIS scores for the last several years have not been much higher than the "5" scored at most of the sites in 2009, but this year (2013) all scores increased by 4-6 points, a dramatic improvement (Figures 2 and 3). It is too soon to determine whether this reflects a temporary gain or permanent recovery, and too sudden to produce a statistically significant trend. However, it is encouraging and hopefully will continue in the future.

Figure 3. Th	Figure 3. Thomas Fork MAIS Regressions										
Site	2009	2010	2011	2012	2013	Linear trends	R square	P-value	No. of years		
TF0010	5	12	5	5	10	no change	0.0199	0.8209	5		
TF0015		8	6	5	9						
TF0030	6	12	4	5	10	no change	0.0021	0.9414	5		
TF0038	5	11	7	5	10	no change	0.0021	0.9414	5		
TF0050	5	8	3	2	8	no change	1.15E-16	1	5		
TF0090	9	13	12	11	14	no change	0.4324	0.2277	5		

References

Johnson, Kelly, 2009. Personal Communications, Ohio University Biological Sciences

Kinney, Chad, 2006. A Comparison of Two Methods of Bioassessment in Streams. Master Thesis at Ohio University.

Kinney, Chad, and Ben McCament, 2010. Screening Guidelines for the Identification of Acid Mine Drainage (AMD) Impaired Watersheds and for Acid Mine Drainage Abatement and Treatment (AMDAT) Plan Selection and Prioritization. Ohio Department of Natural Resources – Division of Mineral Resources Management (ODNR-DMRM) Guidance Document

Kruse, Natalie, Mary W. Stoertz, Douglas H. Green, Jennifer R. Bowman, and Dina L. Lopez, 2014. Acidity Loading Behavior in Coal-Mined Watersheds. *Mine Water and the Environment* 33:177-186.

Stoertz, Mary W. and Douglas H. Green, 2004. Mean Annual Acidity Load: A Performance Measure to Evaluate Acid Mine Drainage Remediation. Ohio Department of Natural Resources Conservation and Restoration Innovations 2004 Applied Research Conference at Ohio University

US Geological Survey (USGS), 2001. *Techniques for estimating selected streamflow characteristics of rural, unregulated streams in Ohio.* Water-resources investigation report 02-4068. Columbus Ohio.

US Geological Survey (USGS) StreamStats website – flow characteristics http://water.usgs.gov/osw/streamstats version 2