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ABSTRACT 

TWUMASI FREDERICK, M.S., August 2018, Geological Sciences 

Applying MODFLOW and Artificial Neutral Networks to Model the Formation of Mine 

Pools in Underground Coal Mines 

Director of Thesis: Dina L. Lopez 

The development and release of acidic drainage and formation of mine pools in 

decommissioned coal mines is an environmental problem for government regulators, 

mining companies and the communities. AMD, characterized by acidic metalliferous 

conditions in water, is responsible for physical, chemical, and biological degradation of 

stream habitat. There is urgent need to be able to predict within some uncertainty the 

formation of mine pools in future mines before the permits are granted by the regulatory 

agencies. This research is part of a larger project that intends to produce a set of GIS 

based tools for regulators and mining companies to determine the probability of 

development of a mine pool. This thesis has two main purposes. The first purpose is to 

model the sensitivity of the Meigs Mine Complex (Ohio) parameters that determine the 

development of mine pools using a groundwater flow modeling program (MODFLOW). 

The second purpose is to determine the best possible regression equation that permits the 

prediction of potentiometric heads in the mine region from variables such as surface 

elevation, bottom of well elevation, overburden thickness, thickness of mined coal, 

thickness of shales, thickness of sandstones, thickness of limestone, accumulated coal 

volume, average precipitation, underground mine area and thickness of the coal seam 

mined using Artificial Neural Network (ANN). Data was collected for the second 

objective from the mine permits and quarterly mining reports that the mining companies 
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present to Ohio Department of Natural Resources (ODNR) and other government 

institutions.  

Results from the physical model of the Meigs mine show that the groundwater 

flows in the direction of the Ohio River. The numerical model of the Meigs Mine 

Complex was elaborated in three stages, the first model was a steady state model to 

simulate water level in wells as reported in 1996, the second model simulated the water 

withdraw and decrease of water levels in the shafts as it was measured in January 2004. 

The third model was a transient model to simulate the recovery of the water levels in the 

shafts after the mine was closed from January 2004 to December 2007.   These results of 

these models show high hydraulic conductivities that are consistent with highly fractured 

rocks and secondary permeability due to the exploitation of the coal, especially in the 

rock layers closer to the void in the coal mine.   

 For the ANN simulations the Group Method of Data Handling (GMDH) of the 

NeuroShell 2 program was used to obtain polynomial regressions using ANN. Two types 

of simulations were done: one considering water withdraw and another without 

considering water withdraw. Results from the artificial neural networks simulations show 

that the average parameters without water withdraw regression equation was the best 

possible equation that will aid in the prediction of the potentiometric heads. Correlation 

of the average calculated potentiometric head at the bottom of the coal layer with the two 

model equations, and the elevation of the top of the coal layers, suggest that all the mines 

that have been considered in this study will develop mine pools if the hydrogeological 

regime is allowed to recover without any other perturbation. This study suggests the need 
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to monitor more regularly wells during mine exploitation and to keep good records of the 

water extracted and locations of extraction points.   
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CHAPTER 1: INTRODUCTION 

1.1. Background 

The development and release of drainage from mine pools in decommissioned 

coal mines is an environmental problem for government regulators, mining companies 

and communities. An area impacted by acid mine drainage will have physical, chemical, 

and biological degradation. Approximately 20,000 km of creeks and rivers in the United 

States are affected by acid mine drainage, and about 85% to 90% of these waterbodies 

receive acid mine drainages from older, abandoned surface and underground mines 

(Skousen et al., 2002). The study of the formation and hydrogeology of mine pools in 

underground coal mines is the focus of this thesis. 

Acid mine drainage (AMD) is produced when sulfide minerals in rocks are 

subjected to oxidizing conditions. Large quantities of AMD may be released from coal 

mines rich in sulfides. The drainage character originating from mines is contingent on the 

acid (sulfides) and alkaline (carbonate) minerals present in the geologic strata in contact 

with the water. AMD is distinguished by low pH and high sulfate and iron 

concentrations. Chemical, biological and physical factors are important for determing the 

rate of acid generation (Akcil, 2004). Primary factors that determine the rate of acid 

generation includes pH, temperature, oxygen of the gas peroid, oxygen concentration in 

the water period, degree of water saturation, chemical action of Fe 3+, surface area of 

exposed sulfide and  bacterial action (Akcil, 2004).   

AMD associated with underground mines are deemed significant environmental 

hazard (Akcil, 2004).   More recently, AMD originating from open pit workings has 

become a problem. Little is known of the possible hazard created by these operations, as 
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many are still being worked or maintained. In this method of mining, large quantity of 

rock are initially subjected to an oxidizing environment (Akcil, 2004).   The hazard of 

long-term run degeneration continually making current rock surfaces accessible for 

oxidization shows that considerable volumes of AMD could materialize following 

closure (Akcil, 2004).  

According to (Currie, 1999), in 1993, the largest underground coal mine in Ohio 

at the time  released contaminated acid mine water into Parker Run, a tributary of 

Leading Creek, at an approximate rate of 35,042 gallons per minute due to flooding of 

the workings and discharge from the resulting mine pool. Roughly one billion gallons of 

mine water were released into the stream (Ohio EPA, 2005). The contaminated discharge 

destroyed natural homes and killed fish along a fifteen-mile stretch of Parker Run, into 

Leading Creek (US Department of Justice, 1996).  

One key factor that determines the impacts of AMD in the environment is the 

formation of mine pools and their potential discharge to the surface. Mine pool formation 

depends on factors such as recharge of water to the mine, thickness of the overburden and 

development of subsidence features above the mines that can generate quick flow 

recharge. Other factors include slope of the mine, elevation of water table, precipitation 

and infiltration, types of rock and connectivity of the mine with other neighboring mines. 

Prediction of formation of mine pools and location of possible discharge is a 

multivariable problem that is difficult to assess, however there is an urgent need for a set 

of empirical models that can allow applicants and regulators to predict within some 

certainty the possible formation and consequences of mine pools. According to the law in 

Ohio, if a mine could develop mine pool that may discharge to the surface, the 
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exploitation permit should either not be issued or the mine plan should be amended to 

avoid potential surface discharge. However, regulators and mining companies do not 

have a scientifically based methodology to determine if the mine will develop a mine 

pool or not. The research in this thesis aims to address this problem.  

1.2. History of Mining in Ohio 

Ohio is situated in the northern part of the Appalachian Coal Basin, which is one 

of the extensive coal areas in the United States. The coal-bearing region in Ohio covers 

thirty-two counties, and is located in the southern and eastern portions of the state 

(Crowell, 1997). Guernsey and Noble Counties were considered to host one of the best 

coal veins in the world (Crowell, 1995). It is estimated that Ohio has 11,265 million short 

tons of economically recoverable coal reserves (USEIA, 2002).  

The first European settlers in Ohio recognized the presence of coal in natural 

outcrops in stream and watercourse banks within the state. Till the time of World War I, 

coal mining in Ohio was conducted virtually completely underground and mostly by hand 

extraction (ODNR, 2011). These underground mine workings gained access to coal 

seams either by vertical mine shafts up to two hundred feet deep, by horizontal mine 

entries (drift entries) in hillsides at the coal elevation, or by sloping tunnels oriented 

downward from the ground surface (ODNR, 2011). With the arrival of excavating 

machinery, new drilling techniques, and recently developed explosives within the mining 

business around World War II, massive earthmoving operations became feasible. Surface 

mining operations became an economic substitute to underground mining. In surface 

mining, all of the rock and soil (overburden) on top of the targeted coal seams are 

excavated, exposing the seam at the surface. The excavated rock and soil on top of the 
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coal is called “overburden,” and it is placed in piles. The exposed coal is removed until 

mostly non-coal rock adjacent to the coal layer is left.  

In Ohio, mines are regulated by Ohio Department of Natural Resources Division 

of Mineral Resource Management (ODNR-DMRM). ODNR-DMRM regulates the 

mining business in a process that strikes a balance between protection of society from the 

adverse effects of mining operations and providing for the country’s requirement for coal 

as essential supply of energy. The duties of ODNR-DMRM include reviewing permit 

applications, amendments, and revisions, inspections of active mines and guaranteeing 

compliance with rules designed to guard population and therefore the environment from 

the potential impacts of mining (ODNR, 2011). 

On August 3, 1977, the Surface Mining Control and Reclamation Act (SMCRA) 

was established by Congress. According to (ODNR, 2011) the Act established rigorous 

national regulations for coal mining and reclamation. Due to the diverse mining 

environment in the country, the government established the Federal Department of the 

Interior's Office of Surface Mining Reclamation and Enforcement. Congress planned that 

the states become the primary regulator, upon acceptances by the Secretary of Interior of 

a state's nominated law and order. In addition to the mining and reclamation laws, 

operators must comply with a number of alternative county, state, and federal laws and 

programs to maintain a permit to mine coal in Ohio (ODNR, 2011).  

1.3. Mine Pools and AMD as Environmental Problem 

Rock layers related to coal seam often contain iron sulfide minerals, with pyrite 

being the most common. Sulfur-bearing rocks exposed to the environment during mining 

react with oxygen and water to form sulfuric acid (ODNR, 2011). This contaminated 
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water (AMD), often flows from underground mines and surface mined areas. AMD is a 

notable environmental issue associated with abandoned mine land and is often 

challenging to control (ODNR, 2011). 

Discharges from underground mines have had significant impact on surface 

waters (Kruse et al., 2013). When mining ceases and groundwater rebounds, there is the 

potential for a mine pool to form. If there is sufficient interconnection between 

groundwater and surface water or weak points in the geological strata, a mine pool may 

discharge into surface water. Mine water transports contaminants from the underground 

mine voids into surface water and groundwater, impacting aquatic chemistry and 

biological communities. Mine pools also have the potential to impact human health and 

safety when unexpected failures lead to large volume discharges. 

There is a need for more accurate prediction of post-mining water level at the 

permit stage to mitigate future environmental impacts. This need is high because mine 

pools often develop after bond release, leaving no funding sources for remediation. The 

discharge of mine pools from closed coal mines is an liability for government regulators, 

mining companies and the communities. In Ohio alone, $28,877,746 has been spent on 

environmental cleanup of pre-SMCRA mines in five watersheds, totaling 61 projects 

from 2005 to 2014 (Bowman, 2015). Therefore the best management procedure is 

prevent mine discharges from occurring, hence the need for empirical models that can 

help in predicting the formation and discharges of a mine pool.  

1.4. Office of Surface Mining (OSM) Project 

  As part of the mining permit process, there is not a science based set of tools used 

to model the possibility of underground mine pool development.  The current method of 
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predicting the post mining water level is by using the elevation of the top of mining or the 

top of coal, but that is not science based so we are developing an empirical predictable 

relationships between topography, soil types, coal thickness, overburden thickness, types 

of overlaying rocks, neighboring mines, precipitation and the difference between pre- and 

post-mining water level. This empirical model will help in the determination of the 

development of mine pools.  Often the mining permit process is sufficient to protect 

water resources; however, some abandoned mines develop pool and produce mine 

discharges. These discharges are in some cases after the bond has been released and the 

coal mining company is no longer responsible. Other times the coal mining company is 

still under bond, creating an expensive and long-term problem for both mine operators 

and regulators. 

This research is part of a larger project that intends to produce a set of GIS based 

tools for regulators and mining companies to estimate the post-mining water level and to 

identify potential areas where there is a risk of surface discharge. The larger project 

covers four objectives: 1) gathering of the data, 2) statistical analysis, 3) modeling of the 

data using Artificial Neural Network (ANN), and 4) creation of the GIS tool. This thesis 

deals with the first and third objective. In addition, the groundwater flow modeling of one 

well studied mine pool, the Meigs Mine Complex in Ohio, was done. 

1.5. Objectives 

This thesis work tried to achieve this goal in two ways: studying and modeling 

carefully the hydrogeology of a mine with pool development (the Meigs Mine Complex, 

location in Figure. 2.3) and modeling the hydraulic head dependent variable with respect 

to data collected from recent exploited coal mines of Ohio with artificial neural networks. 
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They cover the last 35 years and include mines that have mining permits starting with the 

letter D and corresponding to the most recent legislature that came into effect 1982.  

The objectives for the study of the Meigs Mine Complex were: 

1) To investigate the flow regime of the mine and the response of the water levels in 

the mine after the mine closed.  

2) To determine the impact of hydraulic variables such as hydraulic conductivity, 

specific yield, specific storage, and recharge on the water level response. 

A groundwater flow modeling program (MODFLOW) was used to model the sensitivity 

of the Meigs Mine Complex parameters that determine the development of mine pools. 

For the modeling of all the data collected for wells in the recent coal mines of Ohio, I had 

the following objectives: 

1) To determine the best possible regression equation that permits the prediction of 

potentiometric heads in the mine region from variables such as surface elevation, 

bottom of well elevation, overburden thickness, thickness of mined coal, 

thickness of shales, thickness of sandstones, thickness of limestone, accumulated 

coal volume, average precipitation, underground mine area and thickness of the 

coal seam mined. 

2) To use the regression equation to determine the potentiometric head at the 

elevation of the bottom of the coal layer to determine if the water level will be 

higher than the top of the coal layer or the ground surface. 
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CHAPTER 2: GEOLOGICAL SETTING 

2.1. Site Location 

The Meigs Mine Complex is located in Meigs, Vinton, and a small section in 

northern Gallia counties of southeastern Ohio near the town of Wilkesville as seen in 

Figure 2.1. The site is bounded to the southeast by Ohio River and Campaign Creek and 

to the east by Leading Creek. Meigs County has approximately 23,345 residents and per 

capita income of $21,317 as cited by the (U.S Census Bureau, 2016). The site has a 

moderate relief with rolling and precipitous hills and narrow mature valleys (Moody and 

Associates, Inc., 2006).  

  Land surface elevations range from 640 to 1029 feet above mean sea level (m.s.l.) 

with a maximum relief of 400 feet at the southern part of the site and at the northern part, 

the topographic elevations range from 590 to 870 feet mean sea level with a maximum 

relief of 280 feet (Moody and Associates, Inc., 2006). Meigs County drains to the Ohio 

River by way of the Shade River, Leading Creek, Raccoon Creek, and smaller direct 

tributaries to the Ohio River (USDA, 1991). A very small area in the northeastern part of 

the county drains into the Hocking River, a tributary to the Ohio River. The Ohio River 

forms the entire eastern boundary and about half of the southern boundary between 

Meigs County and Jackson, Mason, and Wood Counties in West Virginia (USDA, 1991). 

The Ohio River front stretches about 57 miles in Meigs County (USDA, 1991). The site 

has a low to moderate stream slope and land uses are primarily hardwood forests and 

pasture (Moody and Associates, Inc., 2006).  
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2.2. Geology 

2.2.1. Regional Geology 

The coal-bearing lithologies of Ohio were emplaced during the Pennsylvanian and 

Permian periods (Figure 2.1), approximately 320 to 245 million years ago (Wickstrom, 

2005). Lithologies of this geologic system are well exposed throughout a large, mostly 

unglaciated area of eastern Ohio. The Pennsylvanian system in Ohio is distinguished by 

beds of economically essential bituminous coal. The coal beds are deep and broad in 

some part of Ohio and slender and discontinuous in other parts. (Crowell, 1995). The coal 

beds in Ohio were formed in broad coastal marsh which grew lush vegetation with the 

coal-forming coastal marsh developing rapidly in warm, moist climate near the 

paleoequator (Crowell, 1995). 

Pennsylvanian rocks in Ohio consist of four divisions which are, in ascending 

(oldest to youngest) order: Pottsville, Allegheny, Conemaugh, and Monongahela. Each of 

these groups consists of repeating sequences of sandstones, siltstones, mudstones, 

freshwater limestones, shales, clays and coals that in most cases are comparatively thin 

and laterally discontinuous (Crowell, 1995) The lithology of the Pennsylvanian system 

shows varying depositional environments that appears to have been repeated cyclically 

throughout the duration of the time period (Walker, 1975). Ohio has been exposed to 

extensive uplift, erosion, and weathering during the Mesozoic era and the tertiary period 

of the Cenozoic era (Wickstrom, 2005). Approximately 60 separate seams of coal have 

been identified in Ohio (Crowell, 1995). 

Pennsylvanian lithologies in eastern Ohio have long been the most essential 

economically to the state. Early settlers discovered large deposits of bituminous coal, 
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low-grade iron ores, limestone, clay, shale, and sandstone (Crowell, 1995).The presence 

of these lithologies spurred industrialization of the state (see Figure. 2.2 for coal mines in 

Ohio). In 2008, revenue from coal produced in the state is estimated at more than $600 

million annually and is mined by both surface and underground methods 

(Wickstrom,2005). 

 

Figure 2.1. Bedrock geologic map of Ohio. Scale 1:2,000,000 (after Ohio Division of 
Geological Survey, 2006). 
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Figure.2.2. Abandoned coal mines in Ohio. Scale 1:2,000,000 (after Ohio Division of 
Geological Survey, 2012). 
  
2.2.2. Local Geology 

Meigs County is located in the unglaciated Western Allegheny Plateau region of 

the Appalachian highlands (Austin, 1965). Most of the soils are underlain by sedimentary 

rocks of the Conemaugh and Monongahela Formations of the Pennsylvanian System and 
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the Dunkard Group of the Permian System (USDA, 1991). The rocks generally consist of 

siltstone, shale, sandstone and coal with thin layers of limestones in some areas (USDA, 

1991). Most areas of the bedrock have a northeast-southwest strike, with an average dip 

of 30 feet per mile toward the southeast (Sturgeon et al 1958). The western part of the 

county is underlain by rocks of the Conemaugh Formation, the central part by rocks of 

the Monongahela Formation, and the eastern part by rocks of the Permian System 

(USDA, 1991). 

The Meigs Mine Complex comprises the Meigs 31, Meigs 2, and Raccoon mines 

(Figure 2.3). The footprint of the entire mine complex is 23,500 acres (Borch, 2008). The 

Meigs 31 and Raccoon mines are openly connected, whereas Meigs 2 is separated from 

them by a solid coal barrier, 1,350 feet wide at its narrowest point (Borch, 2008). The 

Meigs Mine Complex exploited the Clarion No. 4 coal seam. The elevation of the Clarion 

coal ranges from 611 feet m.s.l. (m.s.l. = feet above mean sea level), according to 

nomenclature used by miners) at the western edge of the mine declining to 250 feet m.s.l. 

on the eastern side (Borch, 2008).  The coal thickness ranges from 4.5 – 6.5 feet and the 

overburden thickness ranges from 190 to 640 feet over Meigs 31 and 115 to 400 feet 

m.s.l. over Meigs 2 (Borch, 2008). Above the complex, the lowest topography is at 

approximately 600 m.s.l. The complex used both room and pillar and longwall methods 

of mining. 
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Figure. 2.3: Map of the status of mine flooding in the Meigs complexes, (Meigs Mine No.2, 
Meigs Mine No.3 and Raccoon Mine) as presented in Borch (2008) and modified from 
CEC (2005). The mine area is contained within the Gallia, Meigs and Vinton Counties, 
Ohio.  
  
2.2.3. Soils 

The Meigs Mine Complex catchment area is underlain by four different soils with 

different hydraulic properties that define four different recharge areas. They are the 
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Upshur-Gilpin, Gilpin-Rarden-Aaron, Upshur-Steinsburg-Gilpin and Upshur-Gilpin-

Pinegrove soils (USDA, 1991).  

Figure. 2.4:  Recharge zone boundary (retrieved from 
https://websoilsurvey.sc.egov.usda.gov). 
 

The Upshur-Gilpin soils makes up about 67 percent of the Meigs County (USDA, 

1991). The soil association consists of about 55 percent Upshur soils, 35 percent Gilpin 

soils, and 10 percent soils of minor extent (USDA, 1991). The soils are formed in 

residuum generated from siltstone, sandstone, and shale. The Upshur-Gilpin soils have a 

high shrink-swell potential, low permeability and mostly found on hillsides and ridgetops. 

Some of the minor soils associated with the Upshur-Gilpin are the well-drained Chagrin, 

poorly drained Newark, Moshannon, Keene, Vandalia and Nolin soils (USDA, 1991).  

Gilpin-Rarden-Aaron soils consist of 45 percent Gilpin soils, 25 percent Rarden 

soils, 10 percent Aaron soils, and 20 percent soils of minor extent (USDA, 1991). The 

https://websoilsurvey.sc.egov.usda.gov/
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soils are formed in residuum derived from siltstone, sandstone, and shale. The soils have 

a moderate permeability, are well-drained, and are mostly found on steep hillsides and 

ridgetops (USDA, 1991). Minor soils associated with Gilpin-Rarden-Aaron are the well-

drained Chagrin, Nolin and Vandalia soils.  

Upshur-Steinsburg-Gilpin soils consist of 40 percent Upshur soils, 40 percent 

Steinsburg soils, 5 percent Gilpin soils, and 15 percent soils of minor extent (USDA, 

1991). The very deep, well drained Upshur-Steinsburg-Gilpin soils are on strongly 

sloping to very steep hillsides and ridgetops with a slow to moderate permeability 

(USDA, 1991). Well-drained Chagrin, poorly drained Orrville, poorly drained Kyger, and 

the well-drained Nolin soils are the minor soils associated with these groups (USDA, 

1991). 

Upshur-Gilpin-Pinegrove soils consist of 30 percent Upshur soils, 25 percent 

Gilpin soils, 20 percent Pinegrove soils, and 25 percent soils of minor extent (USDA, 

1991). The very deep, well drained Upshur-Gilpin-Pinegrove soils are on strongly 

sloping to very steep hillsides and have a moderate permeability (USDA, 1991). The very 

deep, well drained Pinegrove soils have a rapid Permeability (USDA, 1991).  

According to the information in the (USDA, 1991) literature, the order of 

permeability or infiltration of the soils in this area includes from lowest to highest 

Upshur-Gilpin soils, Gilpin-Rarden-Aaron soils, Upshur-Steinsburg-Gilpin soils and 

Upshur-Gilpin-Pinegrove soils.  

2.2.4. Climate 

  Precipitation is uniformly distributed throughout the year with winter snow and 

rains providing a good accumulation of soil moisture by spring (USDA, 1991). Normal 
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annual precipitation is adequate for all crops that are suited to the temperature and length 

of growing season in the area. 23 inches of precipitation out of the total annual 

precipitation (40 inches) usually falls in April through September the growing season for 

most crops (USDA, 1991). In winter, the average temperature is 32 degrees Fahrenheit 

and the average seasonal snowfall is about 21 inches (USDA, 1991). In summer, the 

average temperature is 71 Fahrenheit degrees and the average daily maximum 

temperature is 84 degrees (USDA, 1991). The average relative humidity in midafternoon 

is about 60 percent and at dawn the average is 80 percent (USDA, 1991). Humidity is 

higher at night. The average wind speed is 11 miles per hour in Spring from the south 

(USDA, 1991). 

2.2.5. Hydrogeology 

The Meigs Mine Complex is entirely below drainage with the exception of the 

western edge of the Raccoon Mine where the coal seam is just at or near Raccoon Creek 

(Borch, 2008). No significant quantities of water were encountered during drilling 

operations at Meigs Mine Complex. However, much water was encountered during 

mining of low cover areas, especially in the west sides of the mine (Borch, 2008). The 

primary water producing zone is 77 to 148 feet below the surface which is at 764 feet 

m.s.l. The hydraulic conductivity which indicates the amount of water able to travel 

through an area per unit time under the influence of a hydraulic gradient in this zone 

ranged from impermeable to a high of 5.67 x 10–5 cm/sec (Borch, 2008) or 0.16 feet/day.  

The controlling factor in water flow is due to secondary permeability that exists as joint 

systems, bedding planes, and natural fractures.   
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Groundwater flow is solely restricted to the interaction between near vertical 

fractures and bedding planes separations, which is to be expected due to the low primary 

permeability of the strata (Borch, 2008).  In Appalachian valleys, groundwater flow 

occurs as vertical infiltration along valley walls via stress-relief fractures and lateral 

movement along bedding planes fractures (Wyrick and Borchers, 1981).  Permeability in 

this region is thought to decrease with depth by an order of magnitude for each 100 feet 

(Siplivy, 2004). 
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CHAPTER 3: PREVIOUS WORK AT MEIGS MINE COMPLEX 

Borch (2008) presented a paper about the flooding conditions in the Meigs Mine  

Complex with the purpose of establishing background and hydrologic information 

regarding the Meigs Mine Complex pool. The report also talked about mine pool 

development, water quality and water quantity. Data presented in this report was used 

throughout this research. 

Mining began in 1972, 1973, and 1974 in the Meigs 2, Meigs 31 and Raccoon No. 

2 respectively and closed in 2002 (Borch, 2008).  During mining, the workings were 

dewatered by pumping water to the surface for treatment. With the completion of the 

mine, the potential exists for mine pool water to surface and contaminate various 

tributaries of Leading Creek and Raccoon Creek. This potential discharge would occur in 

the low-lying stream valleys where vertical fractures from stress relief or from subsidence 

may provide a conduit to the surface (Borch, 2008). 

According to (Borch, 2008) pumping of mine water from Meigs 2 into Meigs 31 

began in January 2008 and, in September of 2008, Meigs 31 began pumping into Parker 

Run at approximately 5000 gpm.  

3.1. Effect of Longwall Mining on the Permeability of the Strata. 

The longwall method of underground mining includes the excavation of large 

rectangular coal blocks called panels that can produce subsidence. Total subsidence 

movement is to a large extent influenced by overburden thickness and lithology (Borch, 

2008). Kendorski (1993) provides a model that describes types of fracturing above 

longwall mines, from the mine roof to the ground surface as shown in Figure 3.1. 
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Figure 3.1 Longwall mining subsidence fracture model (as presented by Borch, 2008, and 
modified from Kendorski, 1993). 

 
According to Borch (2008) aquifer dewatering is enhanced by enlargement of 

existing fractures or opening of new fractures above the zone of caving during a 

subsidence event representing both an increase in permeability and porosity that could 

result in dewatering aquifers or streams.  Dewatering of the aquifer is usually limited to 

active mining areas. As the strata settles and becomes re-compressed, groundwater levels 

may rebound as flow paths to the mine become more restricted and less direct. These 

fractures may heal themselves with time if sufficient amount of clay and shale material 

are in the strata (Borch, 2008). On the other hand, if the strata are friable sandstone units 

with little silts and clays, the ability of the fractures to heal is diminished. 
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At Meigs Mine Complex, near surface aquifers were dewatered by surface 

tension- induced fractures, according to Borch (2008) water infiltration into the mines 

was direct in areas of low cover where vertical subsidence-induced fractures intersect 

with surface tension fractures and natural stress-relief fractures. Wyrick and Borchers 

(1981) and Ferguson (1974) describe stress relief fractures in the Appalachians that 

extend to a depth of approximately 150 feet in valley bottoms and sides. 

Figure 
3.2. Areas showing longwall and room and pillar methods of mining. (Meigs Mine No. 2, 
Meigs Mine No. 3 and Raccoon Mine), Gallia, Meigs and Vinton Counties, Ohio (Map 
presented by Borch, 2008 as modified from Moody, CEC 2005). 
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3.2. Meigs Complex Mine Pool.  

3.2.1. Mine Pool Characteristics 

According to Borch (2008) Meigs Mine Complex was recharged by vertical 

infiltration, lateral inflow from adjacent flooded mines and from ground water in the coal 

itself. The Meigs Complex has 7 mineshafts which are accessible for pool level 

monitoring (Figure. 3.2). Recharge into the mines reflects the seasonal climatic 

precipitation as shown in Figure 3.3 and 3.4.  The graphs show a long-term trend of 

seasonal changes in mine water entering the mine pool. Due to the 1,350 foot barrier 

separating Meigs 2 from the Meigs 31 and Raccoon Mine complex, the Meigs 2 mine 

pool acts independently from the Raccoon and Meigs 31 mine pool (Borch, 2008). The 

Raccoon and Meigs 31 mines are hydrologically connected and therefore act in concert. 

The Meigs Mine Complex has undergone several stages from pre-mining 

conditions, active mining and post-mining condition. Water elevation data for the pre-

mining period was unavailable but data for domestic wells that were drilled during active 

mining were available for modeling. Exploitation and dewatering was active during the 

active mining period. Data for the rate of water extraction during the mining period was 

also unavailable. The post-mining stage consists of two stages, the free recovery of the 

water levels from the time of mine completion to January 2008, and pumping of the water 

for treatment from January 2008 to December 2014. Water elevation data from January 

2004 to December 2007 was available for the period of free recovery and from January 

2008 to October 2016 for pumping of water for treatment.  

Prior to pumping out of Meigs 2, the average monthly rate of change of water 

elevation within the mine from January 2006 through January 2008 was 1.44 feet/month 
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and Meigs 31 also had an average monthly rate of change in water elevation of 1.4 

feet/month prior to pumping out (Borch, 2008). 

Figure.3.3. Rate of mine pool flooding and seasonal variability in Meigs 2.The location of 
shafts in Meigs 2 can be seen in Figure 3.2 (Borch, 2008).  
 

 
Figure.3.4. Rate of mine pool flooding and seasonal variability in Meigs 31.The location 
of shafts in Meigs 31 can be seen in Figure 3.2 (Borch, 2008).  
 
3.2.2. Recharge rate calculations. 

Different sections of the mine commonly have distinctly different recharge rates. 

Siplivy (2004) identified eight recharge areas on the western side of the mine complex, 

primarily at Meigs 2. These discrete inflow zones are defined as areas of the mine 

beneath a stream valley, areas with prominent lineaments, and areas with shallow cover 

ranging from 115 feet to 220 feet.  
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Recharge rates were determined volumetrically for the Meigs 2 and for Meigs 31 

sections (Siplivy, 2004).  Siplivy based recharge rates on mine pool inflow volumes over 

a 322-day time period. After mining ceased, water levels were monitored in the mine 

pools. Volume and inflow rate were calculated using mine geometry parameters, in-mine 

elevations, type of mining, and areas of inundation. For Meigs 2, with a volume of 

1,097,645,880 gallons, the inflow rate was estimated at 2367 gpm (455,647.50 ft3/d) over 

11,900 acres (518,364,000 ft2) with a 75% coal recovery rate. This value corresponds to a 

recharge of 3.85 inches/year. For Meigs 31, with a volume of 837,197,255 gallons, 

inflow rate was estimated at 1811 gpm (348,617.50 ft3/d) over 11,600 acres (505,296,000 

ft2) with a 55% coal recovery rate. This value corresponds to a recharge of 3.02 

inches/year. Note that this recharge rates assume that recharge is only occurring from the 

overlying rocks and surface, not from lateral movement of water. 

3.2.3. Meigs 2 Flooding Conditions. 

Figures 3.5 and 3.6 shows pool elevation through time representing distinct 

segments of the mine. The NE Shaft and the NW shaft merged with the South Bleeder 

shaft by early 2005 (Borch, 2008). These two sections now act as one pool evidenced by 

the identical water levels.   

According to Borch (2008) the pool monitored from the 3rd NE Intake shaft 

remained completely isolated from the rest of the flooded sections on Meigs 2 until 

August 2004, when the pool elevation rose to a coal elevation of 530 feet m.s.l. which is 

a topographic high point. Upon reaching the coal elevation the water then spilled over 

into the rest of Meigs 2 through the entry west of the 3rd NE intake shaft. The water 

levels appeared to be converging until about October 2006 after which time the elevation 
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trends appear to be parallel. The 3rd NE Intake shaft shows water rising at a rate equal to 

or slightly slower than the rest of Meigs 2 although the elevation of the pool is higher. 

Figure 3.6 shows that the 3rd NE section has not converged with the rest of the 

mine pool. This section of the mine pool maintains a consistent hydrologic head signaling 

that it may be hydrologically separate from the rest of Meigs 2.  However, when Meigs 2 

began pumping water from the South Bleeder shaft into Meigs 31 on January 28, 2008, 

an immediate response was observed at rates of 3000 gpm (Borch, 2008).  The South 

Bleeder shaft is a little less than six miles from the 3rd NE shaft thus indicating 

permeable conditions in the rocks connecting the two mine pools and between the mine 

pool and the 3rd NE shaft (Borch, 2008). 

Figure.3.5. Graph showing early flooding conditions in Meigs 2 (Borch, 2008). 

Borch (2008) explained that Meigs 2 mine pool had exceeded its control elevation 

in the NE section of the mine and was affecting near surface aquifers.  Most resident’s 

water supplies were replaced with centralized piped water systems after the longwall 

mining impacted private water wells.  The NE section of the mine, while still elevated 

above the rest of the mine pool did exhibit an immediate response to the pumping of the 
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mine pool.  As stated earlier, pumping occurs at the most southern part of the Meigs 2 

pool from the South Bleeder Shaft.   

Borch (2008) estimated that the monthly infiltration rate increased from an 

average 1.4 feet per month to an average 2.9 feet per month.  At this rate, a trend analysis 

indicates the mine pool would reach inundation (600 feet m.s.l.) by the end of 2012 if it 

were not pumped. In January 2008, pumping from Meigs 2 to Meigs 31 started and the 

water level in Meigs 2 stabilized.  However, our interest is in looking at the response of 

the mine pool under non-stressed conditions and free recovery. For that reason, this last 

period of time of the Meigs Mine Complex will not be modeled.  
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CHAPTER 4: MODELING TOOLS 

A groundwater flow model was created for Meigs Mine Complex with the 

purpose of understanding the effect of the different hydraulic parameters and geology of 

the area in the formation of mine pool, especially the water level recovery after the mine 

was closed. For that objective Visual MODFLOW was used to create the groundwater 

flow model. In addition, different coal mines of Ohio that have been included in the OSM 

project were studied for this thesis. Collection of these data is explained in Chapter 5. An 

Artificial Neutral Network program called NeuroShell 2 was used to build empirical 

models for the mines in the OSM project. 

4.1. Ground Water Flow Modeling: Visual MODFLOW 

According to Frank and Guiguer (1990) Visual MODFLOW is a windows based 

program used in creating input files interactively, linking, running the flow, solute 

transport programs and displaying the program results. Visual MODFLOW is the proven 

standard for professional 3D groundwater flow and contaminant transport modeling. 

Visual MODFLOW combines the most powerful and intuitive interface available with 

the latest versions of MODFLOW, MODPATH, Zone Budget and MT3D (Khadri, 2016). 

MODFLOW models the solution of the groundwater flow equations, MODPATH is a 

particle tracking program that models the movement of particles (e.g. contaminants) in an 

advective flow regime system (its uses solutions of fresh water head obtained with 

MODFLOW), and MT3D is a program that solves the solute transport equation 

considering advection, diffusion, and dispersion processes as well as some chemical 

reactions between the solute and the porous media (e.g. sorption, first order decay, etc.).  

Visual MODFLOW is used for evaluating groundwater remediation systems, delineating 
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well capture zones, simulating natural attenuation of contaminated groundwater, 

determining contaminant fate and exposure pathways for risk assessment, designing and 

optimizing pumping well locations for dewatering projects, etc. (Khadri, 2016). 

MODFLOW is a block centered model, which means that head values are 

calculated for the center of each cell node making up the model grid. The finite 

differences of the model means the same head value calculated at the center of the cell is 

representative of the head value located within the entire cell. Visual MODFLOW 

integrates the numerical parameters of all the hydrogeological properties making up the 

field of consideration in order to answer the ground water flow equation in three 

dimensions (Anderson and Woessner, 1992). 

Visual MODFLOW has been designed to enlarge modeling efficiency and 

decrease the complication typically related to creating three-dimensional groundwater 

flow models (Khadri, 2016). The system is divided into three separate modules, the input 

module, the run module, and the output module. The input system permits the user to 

graphically allocate all of the essential input parameters for creating a three-dimensional 

groundwater flow model. It contains the fundamental model building blocks for gathering 

a data set for MODFLOW. The system tours the modeler through the process necessary 

to design a groundwater flow model. The run module allows the user to modify the 

MODFLOW parameters and options which are run-specific. These involves selecting 

initial head values, setting solvers for the matrix equations (the program has options for 

several matrix solver approaches), activating the re-wetting package, specifying the 

output controls, etc. Each of these system selections has default settings, which are able 

to running most simulations. The output system enables the user to show all of the 
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modeling and calibration results for MODFLOW and the other programs. The output 

menu enables the user to select, customize, and overlay the various options for presenting 

the modeling results. 

 According to (Khadri, 2016) MODFLOW model calibration consists of changing 

values of model input parameters in an attempt to match field conditions within some 

acceptable criteria. Lack of proper site characterization may result in a model that is 

calibrated to a set of conditions which are not representative of actual field conditions. 

The calibration procedure involves calibrating to steady-state and transient situation. 

With steady-state simulations, there are no observed changes in hydraulic head with time 

for the field conditions being modeled. Transient simulations involve the change in 

hydraulic head with time. These simulations are needed to narrow the range of variability 

in model input data since there are numerous choices of model input data values which 

may result in similar steady-state simulations (Khadri, 2016). 

4.2. Artificial Neutral Network 

Artificial neural networks are computational method formed by individual cells 

that perform computational calculations similar to the way the human brain works, 

learning from training data (Sanchez-Mesa et al., 2002). Artificial neural network base 

the predictive power in the large number of interconnections between each of the 

different neurons that comprise the neural systems (input neurons, intermediate neurons 

or output neurons). Each of these neurons is connected to the neurons of the preceding 

layer and subsequent layer throughout an algorithm that enables network learning based 

on the training cases. 
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Artificial neural networks have been used for environmental prediction and 

forecasting in hydraulics and hydrology (Schaap et al., 1998, Kisi, 2004), water quality 

(Recknagel et al., 1997, Maier and Dandy, 2000), in engineering, for example to study 

the solar energy potential in Turkey (Sozen et al., 2005), or to predict the fracture 

parameters of concrete (Ince, 2004), in computer science for estimating the effort 

required for developing an information system (Heiat, 2002), in hydrology for predicting 

the river flow forecast in reservoir management (Baratti et al., 2003), in medicine for 

gene expression data analysis (Tan and Pan 2005) and in daily life for bus arrival time 

prediction at bus stop with multiple routes (Yu et al., 2011). 

In general all artificial neural network models present better results than other 

kinds of models like linear regressions. An artificial neural network can model complex 

and non-linear processes through different layers (input layer, intermediate layers and 

output layer) trained by back propagation algorithm to relate input variables to output 

variables (Aznarte et al., 2007). The learning process of neural networks is based on the 

relationship change between the different neurons in neural network. The parameters that 

define this relationship or importance value are called weight. The weight together with 

the bias associated to each neuron, changes throughout the training process to adjust the 

outputs of the neural network to the value of the training cases, allowing the neural 

network learning during the operations in the training phase (Venkatasubramanian et al., 

2003).  For reliability of the predictive model a number of data points are reserved for a 

validation of the results obtained in the training phase. 

The training of the neutral network starts with the introduction of the data in the 

first layer of the neutral network (input layers formed by input neutrons). The data, 



46 

constituted by the training cases, is entered as a vector (X1, X2, X3 ….Xn) and it is 

propagated to the first intermediate layer by the propagation equation as seen in Figure 

4.2. According to (Gopalsamy, 2004) The input values from input neurons (M) is 

processed with the weight (Wmn) of the connection linking the intermediate neuron (n) 

with the previous neuron (m) from which the data comes.  Bn is the bias associated with 

the intermediate neuron (n) as seen in Figure 4.2. According to (Gopalsamy, 2004) the 

propagation equation changes all data to a single signal and activate the signal with the 

activation function to provide an output neuron signal (Yn). This process is repeated for 

all neutrons in intermediate and output layer to create a final predicted value in the output 

layer. 

Group Method of Data Handling (GMDH) is a very powerful architecture in 

NeuroShell 2 that is used in creating polynomial model where predicted value of the 

output would be as close as possible to the actual value of the output. The most common 

approach to solving such models is to use regression analysis. Regression models in 

NeuroShell 2 can be used to obtain regression equations that can be applied to any 

unknown sample, also NeuroShell 2 can be used without identifying a particular 

regression equation and it gives results for the dependent variable that are obtained from 

the information obtained in the training process and then applied to test or unknown 

samples. In this case, you need to have the artificial neural network program NeuroShell 

2 with the training data to obtain the value of the unknown Y. However, if the GMDH 

method is used, an equation that can be imported into EXCEL or other worksheet and 

used to find the unknown Ys without having to have NeuroShell 2.  The algorithm in 
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NeuroShell 2 determines values of the regression coefficients by minimizing the squared 

sum (over all samples) of differences between sample outputs and model predictions.  

 
Figure 4.1 Neural network topology (Astray et al., 2016). 
 
 

 
Figure 4.2 Neural network Structures and rules in the first intermediate layer (Astray et 
al., 2016). 
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CHAPTER 5: METHODOLOGY 

The two objectives of this thesis will be achieved with the following two tasks: 

the modeling of the groundwater flow in the Meigs Mine Complex and the application of 

artificial neural networks to the large data set compiled by the members of the OSM 

project team for all the recent mines of Ohio that have adequate data. The methodology 

presented here is then divided in three sections: data collection, modeling of the Meigs 

Mine Complex, and artificial neural networks. 

5.1. Data Collection 

5.1.1. Data for the modeling of the Meigs Mine Complex 

The initial stage of my thesis dealt with the extraction of data from mine permits 

of mines commissioned during the last 35 years by ODNR as well as monitoring reports 

after mines were closed. Well identification, coordinates, dates, surface elevations, depth 

of well below land surface, static water levels and aquifer types were extracted for the 

pre-mining, mining and post-mining from the well logs in the permits and quarterly 

monitoring reports (QMRs). Actual pre-mining data are often not available because 

multiple mines are often in close proximity of each other, so pre-mining periods are 

obscured by the interaction between mines. For the Meigs Mine Complex, some well 

information reported in the permit was incomplete with many wells lacking coordinates 

and having only the owner name. With the information about the owner name, the 

approximated coordinates of the wells were extracted from the Meigs County property 

database (Meigs County Auditor, 2017). Aquifers reached by those wells were identified 

according to the elevation of the well bottom. Monitoring shaft data used for the 

modeling were also extracted from Borch (2008).  
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5.1.2 Data for artificial neural network modeling of all mines included in this study  

For all the wells and boreholes of the recent mines studied in the OSM project, the 

information in drill holes for each mine was also extracted from the mine permits: drill 

hole identification, co-ordinates, surface elevations, dates, overburden thickness, depth 

from surface, thickness of different layers in the borehole (shales and clays, sandstone, 

limestone, and other coal layers), kind of strata above coal, kind of strata below coal, and 

thickness of coal seam mined were extracted from the permits for the boreholes.  

I participated in the data collection process for the mines studied in the OSM 

project, a total of 28 mines were analyzed for this project, but only 11 mines are sealed 

and contained adequate information for the project. A total of 381 wells are represented 

in the data set. Figure 5.1 shows the location of mines that were considered in this 

project; however, a complete explanation of the way these data was extracted and its 

corresponding statistical analysis is presented in a thesis developed by another student 

(Schafer, 2018). She developed statistical models of the data using the program 

Unscramble X and determine the best regression equations for the data using multivariate 

linear regression, principal component analysis, principal component regression, and 

partial least squares regression. The purpose of applying artificial neural networks to this 

data was to compare results and decide which is the best equation for the geographic 

information system tool that will be developed later. After the completion of Schafer’s 

and my thesis, the OSM team will work in the selection of the best equation for this 

implementation. 
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Figure 5.1. Mines with D permits that were issued mining permits during the last 35 years. 
Only the mines with a star had the data needed for this project and were considered for the 
artificial neural networks modeling (map elaborated by Rebecca Steinberg for the OSM 
project).  
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5.2. Modeling of the Meigs Mine Complex 

5.2.1 Conceptual Model 

According to Anderson and Woessner (1992) a conceptual model is a pictorial 

image of the area to be modeled. Establishing the flow regime and determining 

hydrostratigraphic units of the modeled area defines the conceptual model. 

Potentiometric maps are used in establishing flow regimes in the model area and they are 

constructed by plotting surface water elevation within the wells with their respective well 

coordinates. In this thesis work, the kriging option in Surfer 12.0 has been used to 

produces the flow direction of groundwater and pinpoint hydrologic boundaries. 

Hydrostratigraphic units are used in building the model and they are determined from the 

examination of boreholes, geologic maps and cross sections. 

The physical model of Meigs Mine Complex also used hydrogeological 

parameters (e.g. specific storage, hydraulic conductivity, etc.), hydrostratigraphy, 

topography, and watershed boundaries for the active and post-mining condition. The 

modeled area was selected based on the hydrological boundaries of the surrounding 

watershed to the mine as identified on the topographic watershed map. No-flow and river 

boundaries were assigned to the Meigs mine base map. The hydrostratigraphic units of 

the Meigs complex were determined by constructing cross-sections correlating lithologies 

of boreholes. 

Thirty boreholes evenly distributed within the mines concessions were selected 

for Meigs Mine model building. The stratigraphic data for each borehole was recorded. 

Variables included surface elevation, coal elevation, and depth from surface and strata 

thickness for every significant rock layer reported in the Meigs Mine permit. In this way, 
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the elevation of every contact was calculated (see Table 5.1). Eight Contacts maps were 

generated out of these thirty boreholes and imported into MODFLOW for model 

building. These contact maps were generated by plotting the various lithological contact 

elevations against their respective coordinates using the kriging options in Surfer 12.0. 

With well information (surface elevation, static water level, coordinates, aquifer 

identification, well names, and depth of well below land surface) from the Meigs Mine 

permit and the county property database, maps of potentiometric elevation were 

constructed. The wells used in this modeling are for simulating mining conditions during 

mining because data was not available prior to mining. Maps of potentiometric elevation 

in the wells of each aquifer were constructed to determine the flow regime of the area. 

These maps were generated by plotting the surface water elevation within the well with 

their respective well coordinates using the kriging option in Surfer 12.0. 

5.2.2. Numerical Model. 

A numerical model of Meigs Mine Complex was created using the established 

physical Meigs model and Visual MODFLOW. The catchment area for the Meigs 

complex was gridded 0.5 miles by 0.5 miles and areas beyond the boundaries were 

deactivated. 

Layer boundaries were determined by plotting surface elevations of the contacts 

between different lithologies of the thirty boreholes with their respective coordinates 

using the kriging option in Surfer 12.0 and then imported in MODFLOW. The eight 

contact maps constructed were imported into MODFLOW for numerical model building. 

Boundaries for the watershed where Meigs Mine Complex is located were identified in 

the topographic map and served as river boundaries of the groundwater flow model as 
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well as no-flow boundaries for the model. Six streams identified in the catchment area 

were used as river boundaries during modeling, individual cells making up the river 

boundary were allocated values of river conductance, river bottom elevation and river 

stage elevation. Areas beyond the boundaries were deactivated in MODFLOW. Constant 

head boundary conditions were assigned to the western and eastern margin of the three 

aquifers in the model based on head elevations obtained from the water potentiometric 

maps for each aquifer. 

Visual MODFLOW incorporates the numerical values typical of all the 

hydrogeologic characteristics making up the catchment area such as porosity, hydraulic 

conductivity, specific yield, specific storage, etc., in order to solve the ground water flow 

equation in three dimensions. During the calibration procedure of the potentiometric 

heads using MODFLOW, input parameters for the model are systematically changed 

until a good match between observed and simulated heads in observation wells is 

obtained. The model is calibrated by systematically examining the possible scope of 

values for each input parameter (e.g. hydraulic conductivity and recharge) against 

constant conditions of all other input parameters included in the model. Only one 

parameter is changed at a time. The procedure is iterative until the minimum error is 

obtained in the calibration. 

As it was discussed earlier, the Meigs Mine Complex has experienced several 

stages from pre-mining conditions, active mining, and post-mining conditions. This last 

stage includes two periods: free recovery of the water levels and pumping of the water for 

treatment. In our work, we are interested especially in the free recovery period. 

Unfortunately, we could not find water elevation data for the pre-mining period or data 
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for the rate of water extraction during the mining period. We only had data for domestic 

wells that were drilled during April 1996 to May 1996; however, at that time the mine 

was under exploitation and was probably being dewatered. We also have data from 

November 2003 to October 2016 for the elevation of water in the shafts, with data from 

January 2004 to December 2007 for the period of free recovery and from January 2008 to 

October 2016 for pumping of water for treatment. In order to know the hydraulic 

conductivities and other parameters of the mine after closure, the free recovery period 

should be modeled. The heads measured in the shafts starting at the end of 2003 and 

ending in December 2007 could be used for this purpose. The initial elevation of water in 

the Mine Complex with only the elevation of water in shafts could not be reproduced. For 

that reason, it was decided to work a steady state model to reproduce the water levels in 

the wells during April 1996 assuming no pumping. This calibrated model was later used 

as the initial condition to simulate a second model pumping water out of the shafts to 

reproduce the elevation of water in the shafts in January 2004. Once this second model 

was calibrated, it was the initial starting model for the third transient model to simulate 

the recovery of the water levels during the period of free recovery. This last model and 

period is the most interesting for this work. In this way, the hydraulic conductivites, 

specific yield, and specific storage of each the layers, as well as the recharge was 

calibrated for the free recovery of the water levels in the post-mining period. 

For the steady-state models and the transient model, they were calibrated until the 

lowest error values based on calculated heads and observed heads was obtained. This 

process was repeated for the hydraulic conductivity of the layers and four recharge areas 

in the model until they supported the lowest error values calculated by the model. A 
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sensitivity analysis was performed in order to establish the confidence of each of the 

calibrated recharge and hydraulic conductivity parameters and to determine the 

parameters that affect more the results of the model. A sensitivity analysis was conducted 

by systematically altering the value of each independent calibrated parameter and 

observing the change in model error results with respect to the calibrated model 

parameters. All the other parameters were kept at the value of the calibrated model. 

After the sensitivity analysis had been performed in the steady-state calibrated 

second model, transient simulations were conducted to establish the changes in 

groundwater flow conditions throughout the modeled area with respect to time (third 

model). The transient model was then run for a total of 4 years (January 2004 to 

December 2007) to simulate the evolution of the potentiometric head in that period of 

time. The transient model was calibrated until the lowest error values based on calculated 

heads and observed heads was obtained. Here all the heads measured during that period 

of time every month were considered. This process was repeated for the hydraulic 

conductivity of the layers, specific storage of the layers, specific yield of the layers and 

four recharge areas in the model until they supported the lowest error values calculated 

by the model. A sensitivity analysis was performed for the transient calibrated input 

parameters.  

5.3. Artificial Neural Networks applied to potentiometric heads in wells at coal 

mines in Ohio 

The final stage of my thesis involves building empirical models for mine pools 

using artificial neural networks. This prediction method was selected due to the 

complexity of the data, nonlinearity of the variables and the variety of the variables 
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involved. Statistically identified variables of the mines obtained by Schafer (2018) in her 

thesis project were used as inputs parameters to this model. The parameter that was more 

difficult to obtain for the data set was the withdraw of water during the time the heads 

were measured in the different wells. The data for the wells include all the mines that 

have been active during recent years and have a D permit. Two data sets were available 

for all the wells of the mines, one with water withdraw obtained from the National 

Pollutant Discharge Elimination System (NPDES) permit from the Environmental 

Protection Agency and another data set that was larger and contained no data for water 

withdraws. However, the accumulated coal extracted for each mine at the time the well 

was monitored was calculated by Schafer (2018) using data retrieved from Mine Safety 

and Health Administration (2018). The water extracted at the time the mine was under 

operation should be a function of the cavity that has to be dewatered or the accumulated 

coal extracted. For that reason, these two variables should be related and even with the 

lack of water withdraw data, it is expected that it is possible to obtain a good regression.  

For reliability of the predictive model the statistically identified variables with water 

withdraw and variables without water withdraw were divided into training and validation 

data and imported into Neuroshell 2 for model building. Ninety per cent of the data was 

selected randomly for training purpose and 10% of the data was selected randomly for 

use as the validation data set. The same randomly selected calibration and validation data 

sets used by Schafer (2018) for the multivariate analysis in Unscramble were used here 

for a better comparison later. 

The model was developed based on the training data and the produced models 

were validated for prediction capacity using the validation data. The data extraction tool 
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in NeuroShell 2 was used to separate the two data sets prior to treatment. After that, the 

Design tool in NeuroShell 2 was used to apply the regression options. These variables 

were calibrated in NeuroShell 2 using the Group Method of Data Handling, which works 

by building successive layers with links that are simple polynomial terms. The layers are 

created by computing regressions of the input variables and then choosing the best ones 

called survivors. The design module create a great deal of flexibility in the configuration 

of the variables that are required for the training of the network. The maximum, average, 

and minimum potentiometric heads of the mines served as the dependent variables and 

the independent variables were overburden thickness, surface elevation, bottom of well, 

thickness of mined coal seam, accumulative coal volume extracted, water withdraw, 

underground mine area, and the average annual precipitation. In addition, the following 

independent parameters were also considered: total coal thickness, thickness of 

sandstone, thickness of limestone, and thickness of shale. These parameters were 

extracted from the closest borehole to each well. The best model was selected based on 

the estimation of errors between the observed and the calculated heads.  
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CHAPTER 6: GROUNDWATER FLOW MODELING RESULTS 

6.1. Modeled Area 

A catchment area map was created to determine the location of the Meigs Mine 

Complex. Figure 6.1 shows the area of the Meigs Mine Complex with the various River 

boundaries and No flow boundaries. The Meigs Mine Complex has an area of 23,500 

acres. Raccoon Creek flows from the north to meet the No flow boundary at the south of 

the Meigs Mine Complex. Little Raccoon Creek flows from the north into the Raccoon 

Creek at the north western part of the Meigs Mine Complex. Little Leading Creek flows 

into Leading Creek at the eastern part of the Meigs Mine Complex which further flows 

into the Ohio River at the south. Campaign Creek flows into the Ohio River at the 

southern part of the Meigs Mine Complex. No flow boundary can be found at the western 

and eastern margin of the Meigs Mine Complex. 
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Figure 6.1 Boundary conditions of the modeled area. 

 
Figure 6.2 Modeled area showing locations of boreholes, wells, and mine extents.  
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6.2. Contact Maps 

The extracted data for thirty boreholes (drill hole ids, co-ordinates, surface 

elevations, depth from surface and lithologies) from ODNR mine permits were used in 

the determination of the various contact elevations for the lithologies as seen in table 6.1  

Table 6.1 shows the lithological contact elevations in the Meigs Mine Complex 

catchment area, whiles Table A.1 shows the various lithological contact elevations for the 

30 boreholes. These boreholes were correlated together to establish the major lithologies 

within Meigs catchment area. Shale, sandstone and coal were the dominant 

hydrostratigraphic units determined. Eight lithological contacts were established among 

the sandstones, shales, and coal which can be seen in Table A.1 in Appendix A. The 

lithologies were in repeating sequences with layer 1 being shale 1, layer 2 being 

sandstone 1, layer 3 being shale 2, layer 4 being sandstone 2, layer 5 being shale 3, layer 

6 being sandstone 3, layer 7 being shale, layer 8 being coal and layer 9 being shale. 

Figure 6.3 below and Figures A.1, A.2, A.3, A.4, A.5, A.6, and A.7 in Appendix 

A show the contact maps generated out of the various calculated contact elevation of the 

boreholes. Elevation increases from southwest to northeast of the map for Figures 6.3, 

A.1 and A.2. For Figures A.3 and A.4 in Appendix A elevations increases from west to 

east of the map. For Figures A.5, A.6 and A.7 elevation increases from northwest to 

southeast of the maps.  
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Table 6.1. Different lithologies reported in the boreholes drilled by the mining 

company in the Meigs Mine Complex their average thickness of the strata, depth from 

surface of the upper contact and higher elevation of the upper contact. Red and light 

brown, represent rocks with low and high hydraulic conductivity, respectively. Black 

represents coal and blue limestone. 
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Figure 6.3. Upper contact map of aquifer C with a contour interval of 10 feet. 

6.3. Potentiometric Maps. 

Wells located in three aquifers were reported in the Meigs Mine Complex 

permits. With the information from the mine permit and the wells found in the Meigs 

county property database, maps of the potentiometric elevation in the wells of each 

aquifer were constructed.  These maps were generated by plotting their surface water 
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elevation within the well with their respective well coordinates using Surfer software. 

The sandstone aquifers were identified as zone A, zone B and zone C. 

Figure 6.4 shows the potentiometric heads for the shallowest aquifer (zone A). 

This Figure shows higher potentiometric heads at the eastern margin of the map and 

indicates general flow direction towards the western part of the map. Figure 6.5 (for 

aquifer zone B) shows higher potentiometric heads at the northeastern margin of the map 

and indicates general flow direction towards the southwest. Figure 6.6 which is the 

deepest aquifer (zone C) shows higher potentiometric heads at the northern margin of the 

map and indicates general flow direction towards the southern part of the map
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Table 6.2 Wells from ODNR permits and Meigs property database. The blue colored wells were extracted from mine permits and the 
white colored wells were extracted from the Meigs County property database. Static water level (SWL) was reported for all the wells. 
Dates were not reported for the wells extracted from the county database. 
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Figure 6.4. Potentiometric head map for aquifer A with a contour interval of 5 feet. 
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Figure 6.5. Potentiometric head map for aquifer B showing well locations with a contour 
interval of 5 feet.      
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Figures 6.6 Potentiometric head map for aquifer C showing well locations with a contour 
interval of 5 feet.      
 
6.4. Transient Data Analysis of water elevation recovery in shafts 

Increasing heads with time was observed in the data for the head recovery period 

in Table B.1 in Appendix B. It was suspected that this increase in head could be 

correlated with precipitation because infiltration and recharge should be a function of 

precipitation. Figure 6.7 shows a strong positive correlation between accumulated 

precipitation and pool elevation in the Grange Seal monitoring shaft. This behavior is 

similar for the data of all the other shafts. Data for precipitation during the period of time 
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for the monitoring of free water level recovery for this shaft is presented in Table B.1 of 

Appendix B. Cross-correlograms of precipitation and water level were done using the 

program PAST (Hammer et al., 2001) to determine the lag time of precipitation and water 

level. In a cross-correlogram, one variable is shifted in time with respect to the other 

variable and the correlation coefficient between the variables is found. A maximum or 

minimum in the correlation coefficient represent the lag time between the two variables. 

Figure 6.8 shows a maximum in cross correlation coefficient between accumulated 

precipitation and pool elevation in the Grange Seal shaft with head responding to 

precipitation after 4 months. The other maximum at around 16 months is obviously due 

to annual variation. Figure 6.9 shows an overburden thickness of 290 feet. With a lag 

time of 4 months and overburden thickness of 290 feet for the Grange Seal shaft a flow 

velocity of 2.4 feet/day was calculated. This is an unusually high water flow velocity and 

can only be explained by a high hydraulic conductivity in the rocks overlying the coal 

mine due to fractures produced by the coal exploitation. 
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Figure.6.7. Response of post mining water elevation to precipitation in the Grange seal 
shaft showing a strong positive correlation between the accumulated precipitation and the 
mine pool elevation. 

 
Figure 6.8. Cross correlation between accumulated precipitation and pool elevation 
elevation in the Grange Seal shaft with head responding to precipitation after 4 months. 
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Figure 6.9 Location and overburden thickness of the Grange monitoring shaft. Different 
colors represent different hydrostratigraphic units in the model. 
 
6.5. Summary of physical model 

The transient analysis work of the response of water elevation within the mines to 

precipitation supports the relative fast movement of water in the lithologies. A flow 

velocity of 2.4 feet/day is consistent with highly fractured rocks and secondary 

permeability.  

Correlation of the water potentiometric maps for each aquifer was compared with 

the elevation of the upper contact of the formation hosting the aquifer.  For example, 

Figure 6.3 was correlated with Figure 6.6 and it was observed that the maps seem 

inversely correlated. Areas of the aquifer that have the higher contact elevation have the 

lower potentiometric head and the areas with lower contact elevation have higher 

potentiometric heads. This indicates that groundwater flows toward the southern part of 

the model (Ohio River) as it is illustrated in Figure 6.10.  
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Figure 6.10 Schematic diagram showing the relationships between potentiometric head 
and lithological contact with groundwater flowing to the Ohio River in the south. The 
two lines represent the contact between aquifer C and the neighboring rocks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



72 

CHAPTER 7: FLOW MODELING RESULTS 

7.1. First Steady State Model 

The development of a groundwater flow model begins with the transformation of 

the physical model dimension into a grid design. MODFLOW was used in creating the 

model in a steady-state condition. Visual MODFLOW calculates head values for the 

center of each cell node making up the model grid and the fact that the model is finite 

difference means that the same head value calculated at the center of the cell is 

representative of the head value located within the entire cell (Hunt, 1999). 

Topographic elevation grid, bottom layer and the eight contacts map of the 

extracted boreholes were imported into MODFLOW for model building. Elevation grids 

were imported into the groundwater flow model. The model was the divided into nine 

strata based on the nine lithological layers and further refined by adding extra layers to 

each unit.  The final groundwater flow model grid system consisted of 80 columns, 79 

rows, and 9 layers, which created a total of 6,320 nodal points throughout the model. 

Figure 7.1 shows the horizontal dimensions of the model grid. 

After the model was gridded, the area was activated based on the hydrological 

boundaries of the surrounding watershed to the mine and boundary conditions such as 

constant head, no flow, and river boundaries were added to the model. Constant head 

boundary conditions were assigned to the western and eastern margin of the aquifers of 

the model in accordance with the head elevations outlined by the potentiometric map in 

Figure 6.4, Figure 6.5, and Figure 6.6. 
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Figure 7.1.  Horizontal dimension of the model grid for the Meigs Mine Complex. 

Constant head elevation values ranged from 785-725 feet, 720-650 feet, 720-630 

feet for aquifer A, aquifer B and aquifer C, respectively. Fig 7.2 shows the constant head 

boundary conditions for aquifer A. Similar constant head boundary conditions were 

assigned to aquifer B and C with the values corresponding to the potentiometric maps for 

each aquifer. The potentiometric map was overlaid on top of the grid to determine the 

values of the head at each boundary in each aquifer.  
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Figure 7.2. Constant head boundary conditions (brown cells) for aquifer A. 

Six streams were identified in the modeled area causing river boundaries to be 

added to the groundwater flow model as shown in blue in Figure 7.3. Raccoon Creek, 

Little Raccoon Creek, Leading Creek, Little Leading Creek, Campaign Creek, and the 

Ohio River were stimulated within the model through MODFLOW river package. Within 

the river package individual nodes making up the river boundary were assigned values of 

the river stage elevation, river bottom elevation, and river conductance. 
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Figure 7.3. River boundaries (blue cells) of the modeled area. 

River stage elevations and river bottom elevations for the streams were taken 

from www.watersheddata.com and USGS topographic maps. River conductance values 

were calculated for each cell by multiplying the length and width of each respective cell. 

River sediment conductance was calculated in units of (ft2/day).  Mcdonald and Harbaug 

(1998) explain that the MODFLOW river package uses the streambed conductance 

equation (CRIV) to account for the length (L) and width (W) of the river channel in the 

cell, the thickness of the riverbed sediments (M) and their hydraulic conductivity (Kr). 
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Vertical hydraulic conductivity values used for the bottom sediments (Kr) ranges from 

(2.83 to 0.0283) ft/day and was taken from (Fetter, 2001). No-flow boundary conditions 

were assumed in the groundwater model in accordance with the location of the watershed 

boundaries. Areas with no constant head or river boundaries were no-flow boundaries.  

𝐶𝑅𝐼𝑉 =
𝐾𝑟 𝐿 𝑊

𝑀
 

Table 7.1. Values used for River Package in MODFLOW. 

 
 

Values for hydraulic conductivity, porosity, specific yield, and specific storage 

values were taken from Freeze and Cherry (1979) for the groundwater flow model prior 

to calibration as shown in Table 7.2. Different lithologies were assigned different 

hydraulic conductivity values due to the intrinsic properties of the lithologies. 
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Table 7.2 Input parameters for the model prior to calibration. 

 
 

Figure 7.4 shows the cross sections of the lithological layers in the model. Figure 

7.5 shows the Meigs Mine Complex extent within the coal layer of the model, the blue 

area represents Meigs 2 and Meigs 31 whiles the green area represent Raccoon No. 2 

(abandoned mine).  Figure 7.6 shows the location of the cross sectional views of the 

model in the N-S and E-W directions as presented in Figure 7.7 and Figure 7.8, 

respectively.  

 
Figure 7.4. Cross section of the lithological layers in the model. 
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Figure 7.5. Coal layer showing the mine extent of Meigs 2, Meigs 31 (blue) and Raccoon 
No 2 (green, abandoned mine) in a layer view. 
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Figure 7.6. Locational view of the model in the N-S (AA’) and E-W (BB’) directions.   
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Figure 7.7. Cross sectional area map of the layers showing the aquifers (A, B, and C) in a 
south-north direction (AA’ in Figure 7.6). 
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Figure 7.8 Cross sectional area map of the layers showing the aquifers (A, B, and C) in an 
east-west direction BB’ in Figure 7.6. 
 

Figure 7.9 shows the recharge boundary of the modeled area. These boundary 

conditions were added based on the different soil types and their infiltration rates found 

in the watershed area as seen in Figure 2.4. The blue area represents Gilpin-Rarden-

Aaron soils (Figure 2.4) which are moderately deep and well drained with a moderate 

permeability (USDA, 1991). The white area represents Upshur-Gilpin soils which are 

moderately well drained with a low permeability (USDA, 1991). The brown area 

represents Upshur-Steinsburg-Gilpin soils which are deep, well drained and has low 
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permeability (USDA, 1991). The green area represents Upshur-Gilpin-Pinegrove soils 

which are along the Ohio River and have a very rapid permeability and are well-drained 

and deep soils (USDA, 1991). 

The blue and green areas have moderate to high infiltration rates hence a different 

recharge rate was given to those areas. The white and brown areas had low infiltration 

rates so low recharges rates were assigned to them. The initial recharge rates assigned to 

the blue and green areas were 4 inches/year and 5 inches/year, respectively. The initial 

recharge rate assigned to the white and brown areas were 2.5 inches/year and 2 

inches/year, respectively. These recharge values were changed for calibration purposes 

until the appropriate calibrated heads were reproduced. 
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Figure 7.9. Recharge boundaries of the modeled area. 

In the first model, the groundwater flow model was numerical simulated assuming 

a steady-state condition after all the input parameters (hydraulic conductivity, recharge 

rates, specific yield, specific storage, porosity, etc.) were assigned to the model in 

MODFLOW. The steady state condition assumes that the model flow conditions are not 

changing with respect to time. The input parameters were changed until the model 

converged. The model was then calibrated based on the hydraulic conductivity for the 
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nine lithological layers and the recharge values for the four recharge areas in the model. 

The numerical model was calibrated until the lowest error values based on calculated 

heads and observed heads was obtained. 

Initial groundwater modeling simulations determined that the values of porosity, 

specific yield and specific storage had no effect on the model under steady state 

conditions. Also, manipulating the river conductance (calibrating for the vertical 

hydraulic conductivity of the bottom sediments of the streambeds) did not affect the head 

elevations of the output in MODFLOW; therefore, the river conductance was not 

calibrated in the model and the initial values were used.  

Table 7.3 shows the hydraulic conductivity calibrated values for each lithological 

layer. Table 7.4 shows the calibrated recharge values for the four recharge areas. Figure 

7.10 shows the calculated heads versus the observed heads graph for the steady state 

simulation given by MODFLOW and the corresponding error values obtained in this 

calibration.  
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Table 7.3. Calibrated hydraulic conductivity values for the first steady-state model.  

 

Table 7.4. Calibrated recharge values for the steady-state model.  
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Figure 7.10. First steady state model. Graph showing the calculated heads versus the 
observed heads for the steady state simulation. Obtained errors are high because pumping 
of water was not simulated during the first steady state modeling. 
 

Lithological units in the model have very high hydraulic conductivities, higher 

than those expected for the sandstones, shales, and coals. These results are consistent 

with highly fractured rocks and secondary permeability due to the exploitation of the 

coal. A network of fractures that rapidly transport groundwater could probably be present 

even when the matrix rocks have low permeabilities. The obtained errors are high as well 

as the hydraulic conductivities. One possible reason for this situation is the fact that in 

1996 the mine was in exploitation and some pumping of water should have taken place. 

The fact that water pumping was not simulated probably produces inaccurate flow rates 

due to additional negative pressure applied by the pumping process. The hydraulic 

conductivities obtained in these simulations are not the final values for the post-mining 

period but they reflect the fact that water can flow at higher rates due to pumping and the 

additional fractures generated by the mining exploitation. 
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Figure 7.11, Figure 7.12 and Figure 7.13 show the output of the calibrated steady 

state model. Figure 7.11 presents the shallowest aquifer (aquifer A), Figure 6.12 presents 

aquifer B and Figure 6.13 presents the deepest aquifer (aquifer C). The contour intervals 

for the three Figures are 20 ft. The olive colored areas within the model constitute areas 

of unsaturation whiles the white colored areas constitute areas of saturation. Observation 

wells are represented with the white and green squares within the model. 

Figures 7.11, 7.12 and 7.13 have the same flow pattern. Groundwater flows 

towards the Raccoon Creek, Little Raccoon Creek, Leading Creek, and Little Leading 

Creek.  Groundwater diverges from the Ohio River feeding water to the groundwater 

system, and to the other three modeled rivers. 
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Figure 7.11. First steady state model. Aquifer A water table elevation showing 
equipotential contours at an interval of 20ft. Olive areas constitute areas of unsaturation 
whiles white areas constitute areas of saturation. Observation wells are represented with 
the white and green squares within the model. 
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Figure 7.12. First steady state model. Aquifer B water table elevation showing 
equipotential contours at intervals of 20ft. Olive areas constitute areas of unsaturation 
whiles white areas constitute areas of saturation. Observation wells are represented with 
the white and green squares within the model. 
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Figure 7.13. First steady state model. Aquifer C water table elevation showing 
equipotential contours at intervals of 20ft. white areas constitutes areas of saturation. 
Observation wells are represented with the white and green squares within the model.  
 

A sensitivity analysis was conducted on the calibrated groundwater flow model 

input parameters of recharge, hydraulic conductivity of the shales and hydraulic 

conductivity of the sandstones. 

According to Zheng and Bennett (1995) a sensitivity analysis following optimum 

model calibration is important to quantify the sensitivity of the model results with respect 

to model input parameters. According to Anderson and Woessner (2002) a sensitivity 
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analysis determines how sensitive a model is when a certain parameter is changed while 

all other parameters remain constant. Zheng and Bennett (1995) also explain that a 

parameter found to be highly sensitive to the changes of the model input parameters 

should be given less confidence in final modeling predictions than those input parameters 

that shows little to no sensitivity towards changes in modeling conditions. 

The calibrated input parameters of the recharges (R1, R2, R3, and R4), hydraulic 

conductivity of shale layers, and hydraulic conductivity of the sandstones were each 

evaluated separately. The evaluation of each input parameter was conducted by holding 

all other input parameters at constant calibrated values and altering the value under 

investigation in increments. The percentage change in the hydraulic conductivity 

(𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 − 𝑎𝑙𝑡𝑒𝑟𝑒𝑑 ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦)/

(𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦)was then plotted on the x- axis with the 

associated mean error plotted on the y-axis for a graphical representation of the 

sensitivity. Values for the parameters are presented in Appendix C. 

Figure 7.14 shows hydraulic conductivity sensitivity analysis for the shales in the 

model. Shale1 and shale 3 were very less sensitive to a decrease and increase in the 

hydraulic conductivity of the model. Shale 2 was very sensitive to an initial decrease in 

the hydraulic conductivity of the model and was sensitive as well to an increase in the 

hydraulic conductivity of the model. An initial decrease in hydraulic conductivity of 

shale 4 had a lower effect, but became very sensitive to the model when the hydraulic 

conductivity was increased. Shale 5 was very sensitive to both an increase and decrease 

in the hydraulic conductivity of the model.  Shale 4 and 5 are the closest to the mined 

coal. Values for the parameters are presented in Appendix C. 
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Figure 7.14.  First steady state model. Hydraulic conductivity sensitivity analysis. Note that 
the shales closer to the exploited coal are the most sensitive. 
 

For the hydraulic conductivity in the three aquifers, the model was very sensitive 

to a decrease in the hydraulic conductivity of aquifer A and aquifer B and slightly 

sensitive to an increase in their hydraulic conductivity. Aquifer C was very sensitive to 

the model for an increase in the hydraulic conductivity and less sensitive for a decrease in 

the hydraulic conductivity. 

 
Figure 7.15. First steady state model. Hydraulic conductivity sensitivity analysis for 
sandstones in the model. 
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Figure 7.16 shows the hydraulic conductivity sensitivity analysis for coal in the 

model. The model was very sensitive to both an increase and decrease in the hydraulic 

conductivity of the coal. Figure 7.17 shows the sensitivity analysis of the recharge values 

for the four areas. The model was very sensitive to both increase and decrease in R1 and 

R4 (low recharges) and more sensitive to a decrease in R2 and R4 (high recharges). The 

model was less sensitive to an increase in R2 and R4.  

Figure 7.16. Sensitivity analysis for the hydraulic conductivity of coal in the first steady 
state model. The model was sensitive to an increase and decrease in the hydraulic 
conductivity of the coal. 
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Figure 7.17 First steady state models. Sensitivity analysis of the recharge values for the 

four areas.  

7.2 Second steady state model 

Six monitoring shafts distributed within the Meigs Complex were included in the 

groundwater flow model as pumping and observation wells because of their possible 

influence on the flow regime of the model. Information about where the miners were 

pumping when the mine was active was not available. For that reason, it was decided to 

simulate pumping in each shaft until we could replicate the observed heads in the shaft in 

January 2004. Data for water levels in the shafts is presented in Appendix B. Table 7.5 

shows the parameters of the monitoring shafts based on the variables determined from the 

Meigs Mine Complex map and post-mining water data. According to (Borch, 2008) the 

Meigs Mine Complex was pumping at a rate of 5000 gpm after January 2008 when the 

water levels stabilized and were not rising. Based on an initial pumping rate of 5000 gpm 

and the parameters of the pumping and observation wells the model was calibrated at 

steady-state conditions. Pumping and observation wells were simulated at each shaft 

location. The steady-state model was calibrated changing the pumping rate in each shaft 
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until the lowest error values based on calculated heads and observed heads was obtained. 

Table 7.6 shows the modeled pumping rates to reproduce the water level in the shafts in 

January 2004. The parameters of the calibration of the first steady state model were the 

same in these simulations. 

Figure 7.19 (Aquifer A) and Figure 7.20 (Aquifer B) shows large areas of 

unsaturation with groundwater flow towards the pumping wells suggesting that shallower 

wells probably became dry. In comparison, Figure 7.21 (deepest aquifer) shows large 

areas of saturation with flow towards the pumping wells.  

Table 7.5. Parameters of the monitoring shafts for the second steady state model.  
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Figure 7.18. Second steady state model. Graph showing the calculated heads versus the 
observed heads for the second steady state calibrated model. This model was calibrated by 
changing the pumping rates in each shaft until the lowest errors values were observed. 
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Figure 7.19. Second steady state model. Aquifer A showing equipotential head contours at 
an interval of 20ft. Olive areas constitute areas of unsaturation whiles white areas constitute 
areas of saturation. Observation wells are represented with the white and green squares 
within the model. 
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Figure 7.20. Second steady state model. Aquifer B flow regime showing equipotential head 
contours at interval of 20ft. Olive areas constitute areas of unsaturation whiles white areas 
constitute areas of saturation. Observation wells are represented with the white and green 
squares within the model. 
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Figure 7.21. Second steady state model. Aquifer C flow regime showing equipotential head 
contour intervals of 20ft. Olive areas constitute areas of unsaturation whiles white areas 
constitute areas of saturation. Observation wells are represented with the white and green 
squares within the model. Groundwater flow was towards the wells due to the pumping. 
 
 
 
 
 
 
 
 
 
 
 
Table 7.6 Pumping rate of the calibrated model second steady state model 
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7.3. Transient State Model 

Transient simulations were conducted to establish the changes in groundwater 

flow conditions throughout the modeled area with respect to time, and to calibrate 

hydrogeological parameter during the recovery period of the Meigs Mine Complex. 

Those conditions are our interest because they should reflect what happens to these 

properties after mining. Variables such as hydraulic conductivity, specific yield, specific 

storage, and recharge were calibrated for transient simulation. The initial conditions for 

the model were the conditions of the calibrated second steady state model. Initial 

hydraulic conductivity parameters for the nine layers were taken from Table 7.3. Initial 

recharge values for the four areas were taken from Table 7.4. Initial specific storage, 

initial specific yield and porosity values were taken from table 7.2. The transient model 

was simulated for 1470 days starting in January 2008. Values for the hydraulic heads at 

every shaft were taken from Table B.1, B.2, B.3, B.4, B.5 and B.6 in Appendix B.  

Observation wells were simulated in each shaft. The hydraulic conductivities, specific 

yield, and specific storage for each layer, as well as the recharge values were changed 

one at a time until the error between the observed and the simulated heads was 

minimized. However, it was not possible to calibrate the model without doing some 

changes. It was thought that part of the shale overlying the exploited coal could have 
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fractured and be different from the rest of the shale layer 4. For that reason the model was 

altered as it can be seen in Figure 7.22 and Figure 7.23. Shale 4 was divided into shale 

4A and 4B representing the region directly above the mine and the rest of the shale layer 

in the model.  Adding this new complexity made the calibration of the model possible. 

The bottom coal layer was probably fractured but the value of the hydraulic conductivity 

was already high in the steady state models and we only have to calibrate the whole layer 

again in the transient model to obtain calibration.  

Table 7.7, Table 7.8, Table 7.9 and Table 7.10 shows the calibration values for the 

different strata. Figure 7.24 shows the calculated heads versus the observed heads graph 

for the transient simulation given by MODFLOW and the corresponding error values 

obtained in the calibrated simulation. Note that the NW shaft is an outlier since the 

transient values of the simulated heads get farther from the line of equal simulated vs 

observed head, as time progresses. For that reason, the same simulation was repeated 

without the NW shaft and the error was dramatically improved (Figure 7.25). Figures 

7.26, 7.27, and 7.28 show the flow regime in the three aquifers for the transient 

simulations. Groundwater flow is directed towards the mine void to illustrate that the 

water is filling the void. 
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Figure 7.22 Map views of shale 4A and Shale 4B over the exploited coal 
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Figure 7.23 Cross sectional map of shale 4A and Shale 4B in the E-W direction.  

Table 7.7. Calibrated hydraulic conductivity values for the transient-state model. 
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Table 7.8. Calibrated Recharge values for the transient-state model. 

 

Table 7.9. Calibrated specific yield values for the transient-state model. 

 

Table 7.10. Calibrated specific storage values for the transient-state model. 
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Figure 7.24. Transient model. Calculated heads versus the observed heads for the 
transient state simulation and the corresponding error values obtained in the calibrated 
simulation. 
 

 
Figure 7.25. Transient model.  Calculated heads versus the observed heads for the 
transient state simulation without the NW shaft. NW shaft is an outlier since its transient 
values of the simulated heads get farther from the line of equal simulated vs observed 
head, as time progresses. 
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Figure 7.26. Transient model.  Aquifer A showing equipotential head contours at an 
interval of 20ft. Olive areas constitute areas of unsaturation whiles white areas constitute 
areas of saturation. Observation wells are represented with the white and green squares 
within the model.  
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Figure 7.27. Transient model. Aquifer B flow regime showing equipotential head 
contours at interval of 20ft. Olive areas constitute areas of unsaturation whiles white 
areas constitute areas of saturation. Observation wells are represented with the white and 
green squares within the model. 
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Figure 7.28.  Transient model. Aquifer C flow regime showing equipotential head 
contour intervals of 20ft. Olive areas constitute areas of unsaturation whiles white areas 
constitute areas of saturation. Observation wells are represented with the white and green 
squares within the model. Groundwater flow was towards the wells due to unsaturated 
mine cavity. 
 

A sensitivity analysis was performed for the transient model calibrated input 

parameters. The calibrated input parameters of shales specific yield, sandstones specific 

yield, coal specific yield, recharges (R1, R2, R3 and R4), shales specific storage, 

sandstones specific storage, coal specific storage, shales hydraulic conductivity, coal 
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hydraulic conductivity and hydraulic conductivity of the sandstones were each evaluated 

separately.  

Figure 7.29 shows the sensitivity analysis of shales hydraulic conductivity for the 

transient state simulation. The model was very sensitive to both an increase and decrease 

in shale 5 hydraulic conductivity and also sensitive to an increase and decrease in shale 

4A and shale 4B hydraulic conductivity. Shale 1, shale 2, and shale 3 were not sensitive 

to the model and maintained the same values than in the steady state models. 

Figure 7.30 shows the sensitivity analysis of aquifers hydraulic conductivity. The 

model was sensitive to an increase and decrease in aquifer A and aquifer B. The model 

was very sensitive to an increase in aquifer C hydraulic conductivity and less sensitive to 

a decrease in aquifer C hydraulic conductivity. 
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Figure 7.29 Sensitivity analysis of shales hydraulic conductivity for the transient state 
simulation.  
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Figure 7.30 Sensitivity analysis of aquifers hydraulic conductivity for the transient state 
simulation. 
 

Figure 7.31 shows the sensitivity analysis of coal hydraulic conductivity. The 

model was very sensitive to a decrease in hydraulic conductivity of the coal and slightly 

sensitive to an increase in hydraulic conductivity. The model was also sensitive to the 

hydraulic conductivity of the voids in the coal when the hydraulic conductivity were 

increased and decreased. 
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Figure 7.31 Sensitivity analysis of coal hydraulic conductivity for the transient state 
simulation. 
 

Figure 7.32 shows the sensitivity analysis of recharge for the transient state 

simulation. An increase and decrease in recharge for the four areas resulted in the 

sensitivity of the model. The model was sensitive to the four recharge areas. 

Specific storage and specific yield are parameters that are important in the 

transient groundwater flow equations and they were calibrated in this model. In Figure 

7.33 for specific yield of the shales, the model was very sensitive to an increase and 

decrease in the specific yield of shale 1. The model was not sensitive to the specific yield 

of shale 2, shale 3, shale 4 and shale 5. 
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Figure 7.32 Sensitivity analysis of recharge for the transient state simulation. 
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Figure 7.33 Sensitivity analysis of shale specific yield for the transient state simulation. 

In Figure 7.34 for the sensitivity of the specific yield of the aquifers, the model 

was sensitive to aquifer C when the specific yield was increased and decreased. aquifer B 

and aquifer C were not sensitive to the model when their specific yields were increased 

and decreased. 

Figure 7.35 shows the sensitivity analysis of coal specific yield for the transient 

state simulation. In this analysis the model was sensitive to the void in the coal layer 

when the specific yields were increased and decreased. The specific yield of the coal 

layer was not sensitive in the model when the specific yields were increased and 

decreased. In Figure 7.36 for the sensitivity of the coal and mine void, the model was 

sensitive when the specific yield of the mine void was increased and decreased. The coal 

layer was not sensitive to the model when the specific yield was increased and decreased.  
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Figure 7.34 Sensitivity analysis of aquifer specific yield for the transient state simulation 

 
Figure 7.35 Sensitivity analysis of coal specific yield for the transient state simulation 
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Figure 7.36 Sensitivity analysis of coal specific storage for the transient state simulation 

Figure 7.37 shows that aquifer C was sensitive to the model when the specific 

storage was increased and decreased but aquifer A and aquifer B were not sensitive to the 

model with an increase and decrease in specific storage. In Figure 7.38 the model was 

very sensitive to a decrease in specific storage and less sensitive to an increase in specific 

storage for shale 1.The model was not sensitive to shale 2, shale 3, shale 4 and shale 5. 
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Figure 7.37 Sensitivity analysis of aquifer specific storage for the transient state 
simulation 
 
 



118 

 
Figure 7.38 Sensitivity analysis of shale specific storage for the transient state simulation.  

7.4 Summary of numerical model of the Meigs Mine Complex 

Input parameters that were affected during the first steady-state calibration were 

the four recharge areas and the hydraulic conductivity of the layers as seen in Table 7.4 

and Table 7.3, respectively. Porosity, specific yield, specific storage, stream sediment 

conductance, etc. had no effect on the output of the model during steady state calibration. 

It was observed that the first steady state model was sensitive to the aquifer and shale’s 

closer to the mined coal (aquifer C, shale 4 and 5) when the hydraulic conductivity values 

were increased or decreased. Calibrated hydraulic conductivity values for the lithology’s 

of the first model was very high because pumping of water in the mine was not 

simulated. Water levels in the six shafts in January 2004 were reproduced by estimating 

the pumping rate during the second steady state model.  
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In the transient simulation the calibrated hydraulic conductivity values for the 

lithologies were lower than in the first steady state model as seen in Table 7.5. This is 

probably due to pumping and dewatering of the mine when the mine was active and the 

fact that pumping was not considered in this first model. The transient model was also 

very sensitive to an increase and decrease in the hydraulic conductivity of the aquifer and 

shale’s closer to the mined coal (aquifer C, shale 4A, shale 4B, and shale 5). Input 

parameters that were affected during the transient simulation were the hydraulic 

conductivity, recharge, specific yield, and specific storage. 
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CHAPTER 8: ARTIFICIAL NEUTRAL NETWORK 

Artificial neutral network was used to build predictive models for mine pool 

development due to the empirical predictable relationship between potentiometric heads 

of the mines, overburden thickness, surface elevation, bottom of well, coal thickness, 

thickness of mined coal seam, thickness of sandstones, thickness of limestone, thickness 

of shales, cumulative coal volume extracted, water withdraw, underground mine area, 

average annual precipitation, and the development of mine pool. These parameters served 

as input variables for NeuroShell 2. 

During the 35 years that cover the data for the 11 mines and their wells, water 

withdraw is only reported in the NPDES web site for the period of time 2007 to 2017.  

This situation reduces the number of wells that are available for regression analysis. For 

that reason two different data sets were analyzed: parameters that include the list given 

above with water withdraw and that contains 111 wells, and a second data set that 

contains the data collected for all the wells but does not contain water withdraw with a 

total of 381 wells. It should be noted that even if this data set does not contain water 

withdraw, it contains the accumulated coal extracted at the time of well monitoring, 

which is a parameter that should be related to the dewatering of the mine for working 

underground. The two data sets were analyzed in NeuroShell 2 to obtain polynomial 

regression of the potentiometric head as function of the variables listed above. The Group 

Method of Data Handling was used in NeuroShell 2 to produce first, second, and third 

degree polynomial regressions. 

Simulation of the elevation of water in relation with the coal layer is the purpose 

of this research. For that reason, the resulting second degree polynomial equation was 
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used to model the elevation of water in the coal layer after mine closure. For this 

simulation, the bottom of coal elevation was used instead of the bottom of well to 

simulate the potentiometric head at the bottom of the mined coal layer and this was 

achieved by subtracting the overburden thickness and the thickness of coal from the 

surface elevation of the wells, and the maximum value for accumulated coal volume was 

used for each permit area.  

8.1. Modeling potentiometric heads using the data set containing water withdraw 

Different polynomial regression was analyzed with the neural networks program 

for the data set that contains water withdraw. Table 8.1 shows the mean square error, R 

squared, correlation coefficient and normalized mean square error for the maximum, 

average and minimum input variables of the parameters for the different polynomial 

regressions.  
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Table 8.1. Statistical data for the parameters with water withdraw. Maximum, average, 
and minimum refer to the potentiometric heads obtained at the different wells for the 
monitoring period. 

 

In terms of the mean square errors and correlation coefficients, the third degree 

polynomials seem to reproduce the data better. However, when the outputs of the models 

were analyzed, the third degree polynomials found the accumulated coal volume 

extracted as one of the least significant variables and the third degree polynomial 

equations did not have that variable. For our purposes, the accumulated coal volume 

extracted is a key parameter to be able to predict the heads after the mine closes. To 

predict post-mining water level, accumulated coal volume is set to the maximum value 

for a planned mine (estimated coal that will be extracted) and the water withdraw is set to 

zero for steady-state conditions. For that reason, it was decided to use the second degree 

polynomial that includes these key variables and gives marginal difference in regression 

coefficient with respect to the third degree polynomial. 
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Table 8.2 shows the second degree polynomial equation, most significant variables, and 

least significant variables for the average head. Tables for maximum and minimum heads 

are presented in Appendix D.  

Table 8.2. Second degree polynomial equation and significant variables for average heads 
in wells for the data set with water withdraw 

 

Based on the equation reported in Table 8.2 and the statistical data for the 

parameters with water withdraw; polynomial 2 sets of observed heads were plotted 

against its calculated heads as seen in Figure 8.1. 
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Figure 8.1 (and Figs. D.2 and D.3 in the Appendix D) shows that the observed 

and calculated heads are closely reproduced by the artificial neural networks model with 

a correlation coefficient close to 1.  

 
Figure 8.1 Correlation between observed and calculated heads for the average head for 
mine data with water withdraw. 
 
8.2. Modeling potentiometric heads using the data set without water withdraw 

In a similar way that with the previous data set, the mine data without water 

withdraw was modeled with NeuroShell 2 using first, second, and third degree 

polynomials (see table 8.3). Again, the second degree polynomial was chosen because it 

gave very good statistical results and included the accumulated coal volume extracted.  
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Table 8.3. Statistical data for the parameters without water withdraw. Maximum, average, 
and minimum refer to the potentiometric heads obtained at the different wells for the 
monitoring period. 

  

   Table 8.4 shows the second degree polynomial equation, most significant 

variables, and less significant variables for the average head. Tables for maximum and 

minimum heads are presented in Appendix D. Figure 8.2 shows the observed and 

calculated heads for the average head for the second degree polynomial. It shows that the 

model reproduces the observed data with high precision as it is evident in the correlation 

coefficient very close to 1. Similar Figures were constructed for the maximum and 

average heads as presented in Appendix D.   

 

 

 

 

 



126 

Table 8.4. Second degree polynomial equation and most significant variables for the 
average head for the mine data set without water withdraw. 
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Figure 8.2 Correlation between average observed and calculated heads for the data set 
without water withdraw. 
 
8.3. Simulations to determine the potentiometric head in the coal layer after mine   

closure and recovery of the hydrogeological regime 

Simulation of the elevation of water with respect to the coal layer is the purpose 

of this research. For that reason, the second degree polynomial equations were used to 

model the elevation of water in the coal layer after mine closure as well as the 

potentiometric head of the wells used in each regression after the mine closes. For this 

simulation, in the polynomial equations, the bottom of coal elevation was used instead of 

the bottom of well to simulate the potentiometric head at the bottom of the mined coal 

layer. This parameter was calculated by subtracting the overburden thickness and the 

thickness of coal from the surface elevation of the wells, the maximum value for 

accumulated coal volume was used for each permit area. For the equation that contains 
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water withdraw, zero water withdraw was simulated because free recovery of the water in 

the system is assumed and pumping is expected to cease. 

Figure 8.3 shows the average potentiometric head at the bottom of the mined coal 

layer after mine closure.  The small differences for the two curves produced by the 

simulation vary along the wells, in some cases the simulation with water withdraw gives 

lower values and in some other cases it gives higher values than the simulation values 

without water withdraw. This is consistent with the low errors reported in Tables 8.1 and 

8.3.  

Figure 8.4 shows the average potentiometric head at the bottom of the 381 wells 

after mine closure.  It can be seen in this Figure, that the two equations give similar 

results and could be used with confidence to simulate the head recovery in these wells 

after the mine closes.   

Figure 8.5 shows the average potentiometric heads and the differences between 

the observed and calculated head at the bottom of the 381 well after mine closure. 

  To predict if a mine pool may form, the calculated potentiometric heads at the 

bottom of the coal layer should be compared with the elevation of the top contact 

between the coal and the overlying rocks, usually shale. Figure 8.6 shows the average 

calculated potentiometric head at the bottom of the coal layer with the two model 

equations, and the top of the coal layer as reported in the borehole logs. This Figure 

shows that the elevation of the water will be higher than the elevation of the top of the 

coal, suggesting that all the mines that have been considered in this study will develop 

mine pools if the hydrogeological regime is allowed to recover without any other 

perturbation.
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Figure 8.3. Average calculated heads at the bottom of the mined coal layer after mine closure using the second polynomial regression 
for the data set that contains water withdraw according to the NPDES reports, and the mine data without water withdraw for each 
mine studied in this research. 
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Figure 8.4. Average calculated potentiometric heads for the 381 wells used for this work after mine closure and well recovery. The 
second polynomial regression equations were used to construct this graph for the mines studied in this research. 
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Figure 8.5. A graph showing the average potentiometric heads and the differences between the average observed and calculated heads 
at the bottom of the 381 wells. The second polynomial regression equation was used to construct this graph for the mines studied in 
this research. Note that the difference between heads is not error, but the difference between the heads at the wells after mine closes 
and the measured head during mining activity.  
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Figure 8.6. Average calculated heads at the bottom of the mined coal layer in each mine after mine closure using the two modeling 
approaches and the top of the coal layer. The Figure shows that all the mines considered in this study will develop mine pools because 
the water heads are higher than the top of the coal.  
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CHAPTER 9: CONCLUSION AND RECOMMENDAATION 

For the Meigs Mine groundwater modeling, correlation of the water 

potentiometric maps for each aquifer was compared with the elevation of the upper 

contact of the formation hosting the aquifer.  These maps were inversely correlated and 

areas of the aquifer that have the highest elevation have the lower potentiometric head 

and the areas with lower elevation have the highest potentiometric head. This indicates 

that groundwater flow towards the southern part of the model (Ohio River) under normal 

conditions. However, in our modeling results, water flows away from the Ohio River. 

This is due to the pumping during mining activities and the filling of the mine cavity 

during recovery of the hydrogeological regime after the mine closes. This should be a 

temporary situation and the flow regime should return towards the river when the system 

finally stabilizes. 

For the steady state models, lithological units in the model have very high 

hydraulic conductivities, higher than those expected for the sandstones, shales and coals. 

These results are consistent with highly fractured rocks and secondary permeability due 

to the exploitation of the coal. A network of fractures that rapidly transport groundwater 

flow could probably be present even when the matrix rocks have low permeability’s. The 

relative fast water flow in the modeled rocks is also supported by transient data analysis 

work of the response of water elevation within the mines to precipitation. A flow velocity 

of 2.4 feet/day is consistent with highly fractured rocks and secondary permeability. 

Lithological units (shale 4, shale 5 and aquifer C) closer to the mined coal were 

very sensitive to the model when their hydraulic conductivity values were increased or 

decreased in both steady-and transient state simulations. aquifer C (sandstone) has a very 
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unusually high hydraulic conductivity of 14 feet/day in the more realistic transient model, 

and a channel like shape due to its variable thickness within the catchment area. The 

shale layer at the bottom of the coal layer had an unusually high hydraulic conductivity in 

all the models. 

The transient model was then run for a total of 4 years (January 2004 to 

December 2007) to simulate the evolution of the potentiometric head (free recovery of 

the water levels). During the transient simulation hydraulic conductivity values for the 

lithologies were decreased. The hydraulic conductivity values obtained during the first 

model were too high because water pumping in the mine was not simulated. The more 

reliable parameters obtained in the transient simulations suggest that the rocks closer to 

the mine void present very high hydraulic conductivities compared with normal ranges of 

hydraulic conductivity for each kind of rock. This is consistent with the great perturbation 

in the mine zone produced by the explosives and fracturing of the rocks and coal. 

For the artificial neural networks simulations of the potentiometric head as 

function of the different parameters collected in this work, the most significant variables 

were surface elevation, bottom of well elevation, thickness of sandstones, limestone, and 

shales, average annual precipitation, neighboring underground mined area and 

accumulative coal volume. The thickness of the mined coal and the total thickness of coal 

layers in the boreholes were the least significant variables that often were not included in 

the regression equation.  The average parameters without water withdraw regression 

equation as seen in Table 8.7 is the best equation that will aid in the prediction of the 

potentiometric heads. The reason is that the regressions are good because there was more 
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data. Water withdraw data are sometimes not reported but the extracted coal is reported 

by law. 

The thickness of the sandstones, shales and coal are significant variables that 

contributed to the generation of the regression equation that will be used in the prediction 

of potentiometric heads. Hydraulic conductivity values of the sandstones, shales and coal 

were also significant in the MODFLOW modeling. The model was very sensitive to these 

variables. 

Recommendations to improve prediction models include changing regulations 

such that parameters such as water withdraw pumping rates  and location of the pumps 

should be reported by law, also a detailed program of periodic monitoring of water 

elevation in wells should be established by each mining company.  
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APPENDIX A: LITHOLOGICAL CONTACT MAPS 

Table A.1 shows the lithological contact elevations for the 30 boreholes of the Meigs Mine Complex.
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  Figure A.1 Map of Shale/Sandstone contacts 1 with a contour interval of 10 feet. 
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Figure A.2. Map of Sandstone/Shale contact 2 with a contour interval of 10 feet. 
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Figure A.3 Map of Shale/Sandstone contact 3 with a contour interval of 10 feet. 
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Figure A.4.  Map of Sandstone/Shale contact 4 with a contour interval of 10 feet. 
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Figure A.5. Map of Sandstone/Shale contact 6 with a contour interval of 10 feet. 
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Figure A.6. Map of Shale/Coal contact 7 with a contour interval of 10 feet. 
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Figure A.7. Map of Coal/shale contact 8 with a contour interval of 10 feet. 
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APPENDIX B: PARAMETERS FOR THE SIX POST MINING MONITORING 

SHAFTS 

Table B.1 NE Post Mining Monitoring Shaft for the Meigs Mine Complex. 
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Table B.2 Grange Seal Post Mining Monitoring Shaft for the Meigs Mine Complex. 
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Table B.3 NW Post Mining Monitoring Shaft for the Meigs Mine Complex. 
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Table B.4 Roving Crew Post Mining Monitoring Shaft for the Meigs Mine Complex. 
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Table B.5 Danville Post Mining Monitoring Shaft For the Meigs Mine Complex. 
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Table B.6 South Bleeder Post Mining Monitoring Shaft for the Meigs Mine Complex 
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APPENDIX C: SENSITIVITY ANALYSIS DATA FOR MEIGS MINE MODEL. 

Table.C.1. Sensitivity analysis data for the aquifers hydraulic conductivity (steady-state). 

 
 
 Table.C.2. Sensitivity analysis data for recharge (steady-state) 
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 Table.C.3. Sensitivity analysis data for shales hydraulic conductivity (steady-state). 
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Table C.4  Sensitivity analysis data for shales hydraulic conductivity (transient-state). 
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Table C.5 Sensitivity analysis data for recharge (transient-state) 
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Table C.6 Sensitivity analysis data for the aquifers hydraulic conductivity (transient-
state). 

 
 

Table C.7 Sensitivity analysis data for coal hydraulic conductivity (transient-state). 
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Table C.8 Sensitivity analysis for shales specific storage (transient-state). 
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Table C.9 Sensitivity analysis for aquifers specific storage (transient-state). 
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Table C.10 Sensitivity analysis for aquifers specific yield (transient-state). 
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Table C.11 Sensitivity analysis for shales specific yields (transient-state). 
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APPENDIX D: ARTIFICIAL NEURAL NETWORK 

Table D.1 Second degree polynomial equation and significant variables for maximum 
heads in wells for the data set with water withdraw. 
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Table D.2  Second degree polynomial equation and significant variables for minimum 
heads in wells for the data set with water withdraw 
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Figure D.1 Correlation between observed and calculated heads for the maximum head for 
mine data with water withdraw.  
 

 

Figure D.2 Correlation between observed and calculated heads for the minimum head for 
mine data with water withdraw.  
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Table D.3. Second degree polynomial equation and most significant variables for the 
maximum head for the mine data set without water withdraw. 
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Table D.4 Second degree polynomial equation and most significant variables for the 
minimum head for the mine data set without water withdraw. 
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Figure D.3 Correlation between maximum observed and calculated heads for the data set 
without water withdraw.  
 

 
Figure D.4 Correlation between minimum observed and calculated heads for the data set 
without water withdraw.  
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Table D.5 Average observed and calculated heads for datasets containing water withdrawal 
and datasets without water withdrawal. 
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